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Abstract
In this work, we show that discretizing action
space for continuous control is a simple yet pow-
erful technique for on-policy optimization. The
explosion in the number of discrete actions can
be efficiently addressed by a policy with factor-
ized distribution across action dimensions. We
show that the discrete policy achieves significant
performance gains with state-of-the-art on-policy
optimization algorithms (PPO, TRPO, ACKTR)
especially on high-dimensional tasks with com-
plex dynamics. Additionally, we show that an or-
dinal parameterization of the discrete distribution
can introduce the inductive bias that encodes the
natural ordering between discrete actions. This
ordinal architecture further significantly improves
the performance of PPO/TRPO.

1. Background
In reinforcement learning (RL), the action space of con-
ventional control tasks are usually dichotomized into either
discrete or continuous (Brockman et al., 2016). While dis-
crete action space is conducive to theoretical analysis, in the
context of deep reinforcement learning, their application is
limited to video game playing or board game (Mnih et al.,
2013; Silver et al., 2016). On the other hand, in simulated
or real life robotics control (Levine et al., 2016; Schulman
et al., 2015a), the action space is by design continuous. Con-
tinuous control typically requires more subtle treatments,
since a continuous range of control contains an infinite num-
ber of feasible actions and one must resort to parametric
functions for a compact representation of distributions over
actions.

Can we retain the simplicity of discrete actions when solv-
ing continuous control tasks? A straightforward solution is
to discretize the continuous action space, i.e. we discretize
the continuous range of action into a finite set of atomic
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actions and reduce the original task into a new task with
a discrete action space. A common argument against this
approach is that for an action space with M dimensions,
discretizing K atomic actions per dimension leads to MK

combinations of joint atomic actions, which quickly be-
comes intractable when M increases. However, a simple fix
is to represent the joint distribution over discrete actions as
factorized across dimensions, so that the joint policy is still
tractable. As prior works have applied such discretization
method in practice (OpenAI, 2018; Jaśkowski et al., 2018),
we aim to carry out a systemic study of such straightforward
discretization method in simulated environments, and show
how they improve upon on-policy optimization baselines.

The paper proceeds as follows. In Section 2, we intro-
duce backgrounds on on-policy optimization baselines (e.g.
TRPO and PPO) and related work. In Section 3, we intro-
duce the straightforward method of discretizing action space
for continuous control, and analyze the properties of the re-
sulting policies as the number atomic actions K changes.
In Section 4, we introduce stick-breaking parameterization
(Khan et al., 2012), an architecture that parameterizes the
discrete distributions while encoding the natural ordering
between discrete actions. In Section 5, through extensive
experiments we show how the discrete/ordinal policy im-
proves upon current on-policy optimization baselines and
related prior works, especially on high-dimensional tasks
with complex dynamics.

2. Background
2.1. Markov Decision Process

In the standard formulation of Markov Decision Process
(MDP), an agent starts with an initial state s0 ∈ S at time
t = 0. At time t ≥ 0, the agent is in st ∈ S, takes an
action at ∈ A, receives a reward rt ∈ R and transitions
to a next state st+1 ∼ p(·|st, at). A policy is a mapping
from state to distributions over actions π : S 7→ P (A). The
expected cumulative reward under a policy π is J(π) =
Eπ
[∑∞

t=0 rtγ
t
]

where γ ∈ [0, 1) is a discount factor. The
objective is to search for the optimal policy that achieves
maximum reward π∗ = arg maxπ J(π). For convenience,
under policy π we define action value function Qπ(s, a) =
Eπ
[
J(π)|s0 = s, a0 = a

]
and value function V π(s) =

Eπ
[
J(π)|s0 = s, a0 ∼ π(·|s0)

]
. Also define the advantage
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function Aπ(s, a) = Qπ(s, a)− V π(s).

2.2. On-Policy Optimization

In policy optimization, one restricts the policy search within
a class of parameterized policy πθ, θ ∈ Θ where θ is
the parameter and Θ is the parameter space. A straight-
forward way to update policy is to do local search in
the parameter space with policy gradient ∇θJ(πθ) =
Eπθ

[∑∞
t=0A

πθ (st, at)∇θ log πθ(at|st)
]

with the incre-
mental update θnew ← θ + α∇θJ(πθ) with some learning
rate α > 0. Alternatively, we can motivate the above gra-
dient update with a trust region formulation. In particular,
consider the following constrained optimization problem

max
θnew

Eπθ
[πθnew(at|st)
πθ(at|st)

Aπθ (st, at)
]
,

||θnew − θ||2 ≤ ε, (1)

for some ε > 0. If we do a linear approximation
of the objective in (1), Eπθ

[πθnew (at|st)
πθ(at|st) A

πθ (st, at)
]
≈

Eπθ
[
Aπθ (st, at)

]
+ ∇θJ(πθ)

T (θnew − θ), we recover the
gradient update by properly choosing ε given α.

In such vanilla policy gradient updates, the training can
suffer from occasionally large step sizes and never recover
from a bad policy (Schulman et al., 2015a). The following
variants are introduced to entail more stable updates.

2.2.1. TRUST REGION POLICY OPTIMIZATION (TRPO)

Trust Region Policy Optimization (TRPO) Schulman et al.
(2015a) apply an information constraint on θnew and θ to bet-
ter capture the geometry on the parameter space induced by
the underlying policy distributions, consider the following
trust region formulation

max
θnew

Eπθ
[πθnew(at|st)
πθ(at|st)

Aπθ (st, at)
]
,

Eπθ
[
KL[πθ||πθnew ]

]
≤ ε. (2)

The trust region enforced by the KL divergence entails that
the update according to (2) optimizes a lower bound of
J(πθ), so as to avoid accidentally taking large steps that
irreversibly degrade the policy performance during training
as in vanilla policy gradient (1) (Schulman et al., 2015a). As
a practical algorithm, TRPO further approximates the KL
constraint in (2) by a quadratic constraint and approximately
invert the constraint matrix by conjugate gradient iterations
(Wright and Nocedal, 1999).

Actor Critic using Kronecker-Factored Trust Region
(ACKTR) As a more scalable and stable alternate to
TRPO, ACKTR Wu et al. (2017) propose to invert the con-
straint matrix by K-Fac (Martens and Grosse, 2015) instead
of conjugate gradient iteration in TRPO.

2.2.2. PROXIMAL POLICY OPTIMIZATION (PPO)

For a practical algorithm, TRPO requires approximately
inverting the Fisher matrices by conjugate gradient itera-
tions. Proximal Policy Optimization (PPO) Schulman et al.
(2017a) propose to approximate a trust-region method by
clipping the likelihood ratios ρt =

πθnew (at|st)
πθ(at|st) as ρ̄t =

clip(ρt, 1− η, 1 + η) where clip(x, a, b) clips the argument
x between a and b. Consider the following objective

max
θnew

Eπθ
[

min{ρtAπθ (st, at), ρ̄tAπθ (st, at)}
]
,

||θnew − θ||2 ≤ ε. (3)

The intuition behind the objective (3) is whenAπθ (st, at) >
0, the clipping removes the incentives for the ratio ρt to
go above 1 + η, with similar effects for the case when
Aπθ (st, at) < 0. PPO achieves more stable empirical per-
formance than TRPO and involves only relatively cheap
first-order optimization.

2.3. Related Work

On-policy Optimization. Vanilla policy gradient updates
are typically unstable (Schulman et al., 2015a). Natural
policy Kakade (2002) apply information metric instead of
Euclidean metric of parameters for updates. To further stabi-
lize the training for deep RL, TRPO Schulman et al. (2015a)
place an explicit KL divergence constraint between consec-
utive policies (Kakade and Langford, 2002) and approxi-
mately enforces the constraints with conjugate gradients.
PPO Schulman et al. (2017a) replace the KL divergence
constraint by a clipping in the likelihood ratio of consecu-
tive policies, which allows for fast first-order updates and
achieves state-of-the-art performance for on-policy opti-
mizations. On top of TRPO, ACKTR Wu et al. (2017)
further improves the natural gradient computation with
Kronecker-factored approximation (George et al., 2018). Or-
thogonal to the algorithmic advances, we demonstrate that
policy optimizations with discrete/ordinal policies achieve
consistent and significant improvements on all the above
benchmark algorithms over baseline distributions.

Policy Classes. Orthogonal to the algorithmic procedures
for policy updates, one is free to choose any policy classes.
In discrete action space, the only choice is a categorical
distribution (or a discrete distribution). In continuous action
space, the default baseline is factorized Gaussian (Schulman
et al., 2015a; 2017a). Gaussian mixtures, implicit generative
models or even Normalizing flows (Rezende and Mohamed,
2015) can be used for more expressive and flexible policy
classes (Tang and Agrawal, 2018; Haarnoja et al., 2017;
2018b;a), which achieve performance gains primarily for
off-policy learning. One issue with aformentioned prior
works is that they do not disentangle algorithms from dis-
tributions, it is therefore unclear whether the benefits result
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from a better algorithm or an expressive policy. To make the
contributions clear, we make no changes to the on-policy
algorithms and show the net effect of how the policy classes
improve the performance. Motivated by the fact that un-
bounded distributions can generate infeasible actions, Chou
et al. (2017) propose to use Beta distribution and also show
improvement on TRPO. Early prior work Shariff and Dick
also propose truncated Gaussian distribution but such idea
is not tested on deep RL tasks. Complement to prior works,
we propose discrete/ordinal policy as simple yet powerful
alternates to baseline policy classes.

Discrete and Continuous Action Space. Prior works
have exploited the connection between discrete and con-
tinuous action space. For example, to solve discrete control
tasks, Van Hasselt and Wiering (2009); Dulac-Arnold et al.
(2015) leverage the continuity in the underlying continuous
action space for generalization across discrete actions. Prior
works have also converted continuous control problems into
discrete ones, e.g. Pazis and Lagoudakis (2009) convert
low-dimensional control problems into discrete problems
with binary actions. Surprisingly, few prior works have
considered a discrete policy and apply off-the-shelf policy
optimization algorithms directly. Recently, OpenAI (2018);
Jaśkowski et al. (2018) apply discrete policies to challenging
hand manipulation and humanoid walking respectively. As
a more comprehensive study, we carry out a full evaluation
of discrete/ordinal policy on continuous control benchmarks
and validate their performance gains.

To overcome the explosion of action space, Metz et al.
(2018) overcome the explosion by sequence prediction, but
so far their strategy is only shown effective on relatively
low-dimensional problems (e.g. HalfCheetah). Tavakoli
et al. (2018) propose to avoid taking arg max across all
actions in Q-learning, by applying arg max independently
across dimensions. Their method is also only tested on a
very limited number of tasks. As an alternative, we consider
distributions that factorize across dimensions and we show
that this simple technique yields consistent performance
gains.

Ordinal Architecture. When discrete variables have an
internal ordering, it is beneficial to account for such ordering
when modeling the categorical distributions. In statistics,
such problems are tackled as ordinal regression or classi-
fication (Winship and Mare, 1984; Chu and Ghahramani,
2005; Chu and Keerthi, 2007). Few prior works aim to
combine ideas of ordinal regression with neural networks.
Though Cheng et al. (2008) propose to introduce order-
ing as part of the loss function, they do not introduce a
proper probabilistic model and need additional techniques
during inference. More recently, Khan et al. (2012) motivate
the stick-breaking parameterization, a proper probabilistic

model which does not introduce additional parameters com-
pared to the original categorical distribution. In our original
derivation, we motivate the architecture of (Khan et al.,
2012) by transforming the loss function of (Cheng et al.,
2008). We also show that such additional inductive bias
greatly boosts the performance for PPO/TRPO.

3. Discretizing Action Space for Continuous
Control

Without loss of generality, we assume the action space A =
[−1, 1]m. We discretize each dimension of the action space
into K equally spaced atomic actions. The set of atomic
action for any dimension i is Ai = { 2j

K−1 − 1}K−1j=0 . To
overcome the curse of dimensionality, we represent the
distribution as factorized across dimensions. In particular,
in state s, we specify a categorical distribution πθj (aj |s)
over actions aj ∈ Aj for each dimension j, with θj as
parameters for this marginal distribution. Then we define the
joint discrete policy π(a|s) := Πm

j=1πθj (aj |s) where a =

[a0, a1, ...aK−1]T . The factorization allows us to maintain
a tractable distribution over joint actions, making it easy to
do both sampling and training.

3.1. Network Architecture

The discrete policy is parameterized as follows. As in prior
works (Schulman et al., 2015b; 2017b), the policy πθ is a
neural network that takes state s as input, through multiple
layers of transformation it will encode the state into a hidden
vector h(s) = fθ(s). For the jth action in the ith dimension
of the action space, we output a logit Lij = wTijh(s) +
bij ∈ R with parameters wij , bij . For any dimension i,
the K logits Lij , 1 ≤ j ≤ K are combined by soft-max
to compute the probability of choosing action j, pij =

softmax(Lij)(:=
exp(Lij)∑K−1
j=0 Lij

). By construction, the network

has a fixed-size low-level parameter θ, while the output layer
has parameters wij , bij whose size scales linearly with K.

3.2. Understanding Discrete Policy for Continuous
Control

Here we briefly analyze the empirical properties of the dis-
crete policy.

Discrete Policy is more expressive than Gaussian.
Though discrete policy is limited on taking atomic actions,
in practice it can represent much more flexible distributions
than Gaussian when there are sufficient number of atomic
actions (e.g. K ≥ 11). Intuitively, discrete policy can rep-
resent multi-modal action distribution while Gaussian is by
design unimodal. We illustrate this practical difference by
a bandit example in Figure 1. Consider a one-step bandit
problem with A = [−1, 1]. The reward function for action
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(a) Bandit: Density (b) Bandit: curves

Figure 1. Analyzing discrete policy: (a) Bandit example: compar-
ison of normalized reward (blue), trained discrete policy density
(red) and trained Gaussian policy density (green). (b) Bandit ex-
ample: learning curves of discrete policy vs. Gaussian policy, we
show five random seeds. Most seeds for Gaussian policy get stuck
at a suboptimal policy displayed in (a) and all discrete policies
reach a bi-modal optimal policy as in (a).

a is r(a) illustrated as the Figure 1 (a) blue curve. We train
a discrete policy with K = 11 and a Gaussian policy on the
environment for 105 steps and show their training curves in
(b), with five different random seeds per policy. We see that
4 out 5 five Gaussian policies are stuck at a suboptimal pol-
icy while all discrete policies achieve the optimal rewards.
Figure 1 (a) illustrates the density of a trained discrete policy
(red) and a suboptimal Gaussian policy (green). The trained
discrete policy is bi-modal and automatically captures the
bi-modality of the reward function (notice that we did not
add entropy regularization to encourage high entropy). The
only Gaussian policy that achieves optimal rewards in (b)
captures only one mode of the reward function.

For general high-dimensional problems, the reward land-
scape becomes much more complex. However, this simple
example illustrates that the discrete policy can potentially
capture the multi-modality of the landscape and achieve bet-
ter exploration (Haarnoja et al., 2017) to bypass suboptimal
policies.

Effects of the Number of Atomic Actions K. Choosing
a proper number of atomic actions per dimension K is crit-
ical for learning. The trade-off comes in many aspects:
(a) Control capacity. When K is small the discretization
is too coarse and the policy does not have enough capac-
ity to achieve good performance. (b) Training difficulty.
When K increases, the variance of policy gradients also
increases. We detail the analysis of policy gradient vari-
ance in Appendix B. We also present the combined effects
of (a) and (b) in Appendix B, where we find that the best
performance is obtained when 7 ≤ K ≤ 15, and setting K
either too large or too small will degrade the performance.
(c) Model parameters and computational Costs. Both the
number of model parameters increases linearly and com-
putational costs grow linearly in K. We present detailed
computational results in Appendix B.

4. Discrete Policy with Ordinal Architecture
4.1. Motivation

When the continuous action space is discretized, we treat
continuous variables as discrete and discard important infor-
mation about the underlying continuous space. It is there-
fore desirable to incorporate the notion of continuity when
paramterizing distributions over discrete actions.

4.2. Ordinal Distribution Network Architecture

For simplicity, we discuss the discrete distribution over only
one action dimension. Recall previously that a typical feed-
forward architecture that produces discrete distribution over
K classes produces K logits Li at the last layer and derives
the probability via a softmax pi = softmax(Li), 1 ≤ i ≤ K.
In the ordinal architecture, we retain these logits Li and first
transform them via a sigmoid function si = σ(Li). Then
we compute the final logits as

L′i =
∑
j≤i

log si +
∑
j>i

log(1− si),∀1 ≤ i ≤ K, (4)

and derive the final output probability via a softmax p′i =
softmax(L′i). The actions are sampled according to this
discrete distribution aj ∼ p′j .

This architecture is very similar to the stick-breaking pa-
rameterization introduced in (Khan et al., 2012), where
they argue that such parameterization is beneficial when the
samples drawn from class k can be easily separated from
samples drawn from all the classes j > k. In our original
derivation, we motivate the ordinal architecture from the
loss function of (Cheng et al., 2008) and we show that the
intuition behind (4) is more clear from this perspective. We
show the intuition below with a K-way classification prob-
lem, where the classes are internally ordered as {1, 2, ...K}.

Intuition behind (4). For clarity, let x,y ∈ RK such
that 0 ≤ xi, yi ≤ 1 and define the stable cross en-
tropy CE(x,y) := −

∑K
i=1 xi log max{yi, ε}) with a very

small ε > 0 to avoid numerical singularity. For a sam-
ple from class k, the K−way classification loss based
on (4) is −L′k = CE(tk, s), where the predicted vector
s = [s1, s2...sK ] and a target vector tk = [1, 1...0] with
first k entries to be 1s and others 0s. The intuition becomes
clear when we interpret tk as a continuous encoding of the
class k (instead of the one-hot vector) and s as a intermedi-
ate vector from which we draw the final prediction. We see
that the continuity between classes is introduced through the
loss function, for example CE(tk, tk+1) < CE(tk, tk+2),
i.e. the discrepancy between class k and k + 1 is strictly
smaller than that between k and k + 1. On the contrary,
such information cannot be introduced by one-hot encod-
ing: let ek be the one-hot vector for class k, we always
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have e.g. CE(ek, ek+1) = CE(ek, ek+2), i.e. we intro-
duce no discrepancy relationship between classes. While
Cheng et al. (2008) introduce such continuous encoding
techniques, they do not propose proper probabilistic mod-
els and require additional techniques at inference time to
make predictions. Here, the ordinal architecture (4) defines
a proper probabilistic model that implicitly introduces inter-
nal ordering between classes through the parameterization,
while maintaining all the probabilistic properties of discrete
distributions.

In summary, the oridinal architecture (4) introduces addi-
tional dependencies between logits Li which implicitly in-
ject the information about the class ordering. In practice,
we find that this generally brings significant performance
gains during policy optimization.

5. Experiments
Our experiments aim to address the following questions: (a)
Does discrete policy improve the performance of baseline
algorithms on benchmark continuous control tasks? (b)
Does the ordinal architecture further improve upon discrete
policy? (c) How sensitive is the performance to hyper-
parameters, particularly to the number of bins per action
dimension?

For clarity, we henceforth refer to discrete policy as with
the discrete distribution, and ordinal policy as with the or-
dinal architecture. To address (a), we carry out compar-
isons in two parts: (1) We compare discrete policy (with
varying K) with Gaussian policy over baseline algorithms
(PPO, TRPO and ACKTR), evaluated on benchmark tasks
in gym MuJoCo (Brockman et al., 2016; Todorov, 2008), rl-
lab (Duan et al., 2016), roboschool (Schulman et al., 2015a)
and Box2D. Here we pay special attention to Gaussian pol-
icy because it is the default policy class implemented in
popular code bases (Dhariwal et al., 2017); (2) We com-
pare with other architectural alternatives, either straihghtfor-
ward architectural variants or those suggested in prior works
(Chou et al., 2017). We evaluate their performance on high-
dimensional tasks with complex dynamics (e.g. Walker,
Ant and Humanoid). All the above results are reported in
Section 5.1. To address (b), we compare discrete policy
with ordinal policy with PPO in Section 5.2 (results for
TRPO are also in Section 5.1). To address (c), we randomly
sample hyper-parameters for Gaussian policy and discrete
policy and compare their quantiles plots in Section 5.3 and
Appendix C.

Implementation Details. As we aim to study the net ef-
fect of the discrete/ordinal policy with on-policy optimiza-
tion algorithms, we make minimal modification to the orig-
inal PPO/TRPO/and ACKTR algorithms originally imple-
mented in OpenAI baselines (Dhariwal et al., 2017). We

leave all hyper-parameter settings in Appendix A.

5.1. Benchmark performance

All benchmark comparison results are presented in plots
(Figure 2,3) or tables (Table 1,2). For plots, we show the
learning curves of different policy classes trained for a fixed
number of time steps. The x-axis shows the time steps while
the y-axis shows the cumulative rewards. Each curve shows
the average performance with standard deviation shown in
shaded areas. Results in Figure 2,4 are averaged over 5
random seeds and Figure 3 over 2 random seeds. In Table
1,2 we train all policies for a fixed number of time steps and
we show the average± standard deviation of the cumulative
rewards obtained in the last 10 training iterations.

PPO/TRPO - Comparison with Gaussian Baselines.
We evaluate PPO/TRPO with Gaussian against PPO/TRPO
with discrete policy on the full suite of MuJoCo control tasks
and display all results in Figure 2. For PPO, on tasks with
relatively simple dynamics, discrete policy does not nec-
essarily enjoy significant advantages over Gaussian policy.
For example, the rate of learning of discrete policy is com-
parable to Gaussian for HalfCheetah (Figure 2(a)) and even
slightly lower on Ant 2(b)). However, on high-dimensional
tasks with very complex dynamics (e.g. Humanoid, Figure
2(d)-(f)), discrete policy significantly outperforms Gaussian
policy. For TRPO, the performance gains by discrete policy
are also very consistent and significant.

We also evaluate the algorithms on Roboschool Humanoid
tasks as shown in Figure 3. We see that discrete policy
achieves better results than Gaussian across all tasks and
both algorithms. The performance gains are most signifi-
cant with TRPO (Figure 3(b)(d)(f)), where we see Gaussian
policy barely makes progress during training while discrete
policy has very stable learning curves. For completeness,
we also evaluate PPO/TRPO with discrete policy vs. Gaus-
sian policy on Box2D tasks and see that the performance
gains are significant. Due to space limit, We present Box2D
results in Appendix C.

By construction, when discrete policy and Gaussian pol-
icy have the same encoding architecture fθ(s) shown in
Section 3, discrete policy has many more parameters than
Gaussian policy. A critical question is whether we can
achieve performance gains by simply increasing the number
of parameters? We show that when we train a Gaussian pol-
icy with many more parameters (e.g. 128 hidden units per
layer), the policy does not perform as well. This validates
our speculation that the performance gains result from a
more carefully designed distribution class rather than larger
networks.
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(a) HalfCheetah + PPO (b) Ant + PPO (c) Walker + PPO (d) Humanoid (R) + PPO

(e) Sim. Human. (R) + PPO (f) Humanoid + PPO (g) HalfCheetah + TRPO (h) Ant + TRPO

(i) Walker + TRPO (j) Sim. Human. (R) + TRPO (k) Humanoid (R) + TRPO (l) Humanoid + TRPO

Figure 2. MuJoCo Benchmarks: learning curves of PPO on OpenAI gym MuJoCo locomotion tasks. Each curve is averaged over 5
random seeds and shows mean± std performance. Each curve corresponds to a different policy architecture (Gaussian or discrete actions
with varying number of bins K = 7, 11, 15). Vertical axis is the cumulative rewards and horizontal axis is the number of time steps.
Discrete actions significantly outperform Gaussian on Humanoid tasks. Tasks with (R) are from rllab.

PPO - Comparison with Off-Policy Baselines. To fur-
ther illustrate the strength of PPO with discrete policy on
high-dimensional tasks with very complex dynamics, we
compare PPO with discrete policy against state-of-the-art
off-policy algorithms on Humanoid tasks (Humanoid-v1
and Humanoid rllab) ∗. Such algorithms include DDPG
(Lillicrap et al., 2015), SQL (Haarnoja et al., 2017), SAC
(Haarnoja et al., 2018b) and TD3 (Fujimoto et al., 2018),
among which SAC and TD3 are known to achieve signif-
icantly better performance on MuJoCo benchmark tasks
over other algorithms. Off-policy algorithms reuse sam-
ples and can potentially achieve orders of magnitude better
sample efficiency than on-policy algorithms. For example,
it has been commonly observed in prior works (Haarnoja
et al., 2018b;a; Fujimoto et al., 2018) that SAC/TD3 can
achieve state-of-the-art performance on most benchmark
control tasks for only 106 steps of training, on condition
that off-policy samples are heavily replayed. In general,
on-policy algorithms cannot match such level of fast con-

∗Humanoid-v1 has |S| = 376, |A| = 17 and Humanoid rllab
has |S| = 142, |A| = 21. Both tasks have very high-dimensional
observation space and action space.

vergence because samples are quickly discarded. However,
for highly complex tasks such as Humanoid even off-policy
algorithms take many more samples to learn, potentially
because off-policy learning becomes more unstable and off-
policy samples are less informative. In Table 1, we record
the final performance of off-policy algorithms directly from
the figures in (Haarnoja et al., 2018b) following the practice
of (Mania et al., 2018). The final performance of PPO al-
gorithms are computed as the average ± std of the returns
in the last 10 training iterations across 5 random seeds. All
algorithms are trained for 107 steps. We observe in Table
1 that PPO + discrete (ordinal) actions achieve compara-
ble or even better results than off-policy baselines. This
shows that for general complex applications, PPO + dis-
crete/ordinal is still as competitive as the state-of-the-art
off-policy methods.

PPO/TRPO - Comparison with Alternative Architec-
tures. We also compare with straightforward architectural
alternatives: Gaussian with tanh non-linearity as the output
layer, and Beta distribution (Chou et al., 2017). The pri-
mary motivation for these architectures is that they naturally
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bound the sampled actions to the feasible range ([−1, 1] for
gym tasks). By construction, our proposed discrete/ordinal
policy also bound the sampled actions within the feasible
range. In Table 2, we show results for PPO/TRPO where
we select the best result from K ∈ {7, 11, 15} for dis-
crete/ordinal policy. We make several observations from
results in Table 2: (1) Bounding actions (or action means)
to feasible range does not consistently bring performance
gains, because we observe that Gaussian + tanh and Beta
distribution do not consistently outperform Gaussian. This
is potentially because the parameterizations that bound the
actions (or action means) also introduce challenges for op-
timization. For example, Gaussian + tanh bounds the ac-
tion means µθ(s) ∈ [−1, 1], this implies that in order for
µθ(s) ≈ ±1 the parameter θ must reach extreme values,
which is hard to achieve using SGD based methods. (2)
Discrete/Ordinal policy achieve significantly better results
consistently across most tasks. Combining (1) and (2), we
argue that the performance gains of discrete/ordinal policies
are due to reasons beyond a bounded action distribution.

(a) Humanoid + PPO (b) Humanoid + TRPO

(c) Flagrun + PPO (d) Flagrun + TRPO

(e) FlagrunHarder + PPO (f) FlagrunHarder + TRPO

Figure 3. Roboschool Humanoid Benchmarks: learning curves of
PPO/TRPO on Roboschool Humanoid locomotion taskse. Each
curve corresponds to a different policy architecture (Gaussian
or discrete actions with varying number of bins K = 5, 7, 11).
Discrete policies outperform Gaussian policy on all Humanoid
tasks and the performance gains are more significant with TRPO.

Here we discuss the results for Beta distribution. In our im-
plementation we find training with Beta distribution tends

(a) Walker (b) Ant

(c) Humanoid (R) (d) Sim. Humanoid (R)

(e) Humanoid (f) Humanoid Standup

Figure 4. MuJoCo Benchmarks: learning curves of PPO + discrete
policy vs. PPO + ordinal policy on OpenAI gym MuJoCo locomo-
tion tasks. All policies have K = 11. We see that for each task,
ordinal policy outperforms discrete policy.

to generate numerical errors when the update is more ag-
gressive (e.g. PPO learning rate 3 · 10−5 or TRPO trust
region size is 0.01). More conservative updates (e.g. e.g.
PPO learning rate 3 · 10−6 or TRPO trust region size is
0.001) reduce numerical errors but also greatly degrade the
learning performance. We suspect that this is because the
Beta distribution parameterization (Appendix A and (Chou
et al., 2017)) is numerically unstable and we discuss the po-
tential reason in Appendix A. In Table 2, the results for Beta
distribution is recorded as the performance of the last 10
iterations before the training terminates (potentially prema-
turely due to numerical errors). The potential advantages of
Beta distribution are largely offset by the unstable training.
We show more results in Appendix C.

ACKTR - Comparison with Gaussian Baselines. We
show results for ACKTR in Appendix C. We observe that for
tasks with complex dynamics, discrete policy still achieves
performance gains over its Gaussian policy counterpart.

5.2. Discrete Policy vs. Ordinal Policy

In Figure 4, we evaluate PPO + discrete policy and PPO
+ ordinal policy on high-dimensional tasks. Across all pre-
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Table 1. A comparison of PPO with discrete/ordinal policy with state-of-the-art baseline algorithms on Humanoid benchmark tasks from
OpenAI gym and rllab. For each task, we show the average rewards achieved after training the agent for a fixed number of time steps. The
results for PPO + discrete/ordinal/Gaussian policy are mean performance averaged over 5 random seeds (see Figure 2. The results for
DDPG, SQL, SAC and TD3 are approximated based on the figures in (Haarnoja et al., 2018b). The results for PPO is consistent with
results in (Haarnoja et al., 2018b). Even compared to off-policy algorithms, PPO + ordinal policy achieves state of the art performance
across both tasks.

Tasks DDPG SQL SAC TD3 PPO + Gaussian PPO + discrete PPO + ordinal

HUMAOID-V1 ≈ 500 ≈ 5500 ≈ 6000 ≈ 6000 ≈ 4000 5119± 151 6018± 239
HUMANOID(RLLAB) < 500 ≈ 2000 ≈ 5500 < 500 ≈ 2500 4084± 1312 4884± 1562

Table 2. Comparison across a range of policy alternatives (Gaussian, Gaussian +tanh, and Beta distribution (Chou et al., 2017)). All
policies are optimized with PPO/TRPO. All tasks are training for 10M steps. Results are the average ± std performance for the last 10
training iterations. Top two results (with highest average) are highlighted in bold font. Tasks with (R) are from rllab.

PPO Gaussian Gaussian+tanh Beta Discrete Ordinal

WALKER2D 3500± 360 3274± 251 274± 6 3390± 190 4249± 239
ANT 4445± 194 4622± 171 3112± 173 3256± 778 3690± 557
HALFCHEETAH 1598± 23 1566± 26 1193± 24 4824± 199 3477± 1497
HUMANOID 3905± 502 4007± 698 2680± 2493 5119± 151 6018± 403
HUMANOIDSTANDUP 166446± 18348 160983± 3842 155362± 8657 161618± 10224 170275± 19316
HUMANOID (R) 2522± 1684 5863± 1288 2680± 2493 4084± 1312 4884± 1562
SIM. HUMANOID (R) 5.1± 0.4 4.3± 0.5 4.4± 0.6 214± 136 801± 569

TRPO

ANT −76± 14 −89± 13 2362± 305 2687± 556 2977± 266
HALFCHEETAH 1576± 782 386± 78 1643± 819 3081± 766 3352± 1196
HUMANOID 1156± 163 6350± 486 3812± 1973 3908± 117 3577± 272
HUMANOID STANDUP 137955± 9238 133558± 9238 111497± 15031 142640± 2343 143418± 8638
HUMANOID (R) 65± 8 38± 2 38± 3 84± 24 161± 26
SIM. HUMANOID (R) 6.5± 0.2 4.4± 0.1 4.2± 0.2 42± 6 93± 28

sented tasks, ordinal policy achieves significantly better
performance than discrete policy both in terms of asymp-
totic performance and speed of convergence. Similar results
are also presented in table 2 where we show that PPO +
ordinal policy achieves comparable performance as efficient
off-policy algorithms on Humanoid tasks. We also com-
pare these two architectures when trained with TRPO. The
comparison of the trained policies can be found in table 1.
For most tasks, we find that ordinal policy still significantly
improves upon discrete policy.

Summarizing the results for PPO/TRPO, we conclude that
the ordinal architecture introduces useful inductive bias that
improves policy optimization. We note that sticky-breaking
parameterization (4) is not the only parameterization that
leverages natural orderings between discrete classes. We
leave as promising future work how to better exploit task
specific ordering between classes.

5.3. Sensitivity to Hyper-parameters

Here we evaluate the policy classes’ sensitivity to more
general hyper-parameters, such as learning rate α, number

of bins per dimension K and random seeds. We present
the results of PPO in Appendix C. For PPO with Gaussian,
we uniformly sample log10 α ∈ [−6.0,−3.0] and one of 5
random seeds. For PPO with discrete actions, we further
uniformly sample K ∈ {7, 11, 15}. For each benchmark
task, we sample 30 hyper-parameters and show the quantile
plot of the final performance. As seen in Appendix C, PPO
with discrete actions is generally more robust to such hyper-
parameters than Gaussian.

6. Conclusion
We have carried out a systemic evaluation of action dis-
cretization for continuous control across baseline on-policy
algorithms and baseline tasks. Though the idea is simple,
we find that it greatly improves the performance of base-
line algorithms, especially on high-dimensional tasks with
complex dynamics. We also show that the ordinal architec-
ture which encodes the natural ordering into the discrete
distribution, can further boost the performance of baseline
algorithms.
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A. Hyper-parameters
All implementations of algorithms (PPO, TRPO, ACKTR) are based on OpenAI baselines (Dhariwal et al., 2017). All
environments are based on OpenAI gym (Brockman et al., 2016), rllab (Duan et al., 2016) and Roboschool (Schulman et al.,
2017a).

We present the details of each policy class as follows.

Gaussian Policy. Factorized Gaussian Policies are represented as πθ(·|s) = N(µθ(s),Σ) with µθ(s) as a two-layer neural
network with 64 hidden units per layer for PPO and ACKTR and 32 units per layer for TRPO. The covariance matrix Σ is
diagonal Σii = σ2

i , with each σi a single variable shared across all states. Such hyper-parameter settings are default with
baselines.

Discrete Policy. Discrete policies are represented as πθ(·|s) = Πm
i=1πθi(·|s) with πθi(·|s) a categorical distribution

over atomic actions. We specify K atomic actions across each dimension, evenly spaced between −1 and 1. In each
action dimension, the categorical distribution is specified by a set of logits lj(s) (lj(s) for action j in state s) and lj(s) is
parameterized to be a neural network with the same architecture as the factorized Gaussian above.

Ordinal Policy. Ordinal policies are augmented with an ordinal parameterization compared to the discrete policies.
Ordinal policy has exactly the same number of parameters as the discrete policy.

Gaussian+tanh Policy. The architecture is the same as above but the final layer is added a tanh transformation to ensure
that the mean µθ(s) ∈ [−1, 1].

Beta Policy. A Beta policy has the form π(αθ(s), βθ(s)) where π is a Beta distribution with parameters αθ(s), βθ(s).
Here, αθ(s) and βθ(s) are shape/rate parameters parameterized by two-layer neural network fθ(s) with a softplus at the
end, i.e. αθ(s) = log(exp(fθ(s)) + 1) + 1, following (Chou et al., 2017). Actions sampled from this distribution have a
strictly finite support. We notice that this parameterization introduces potential instability during optimization: for example,
when we want to converge on policies that sample actions at the boundary, we require αθ(s)→∞ or βθ(s)→∞, which
might be very unstable. We also observe such instability in practice: when the trust region size is large (e.g. ε = 0.01) the
training can easily terminate prematurely due to numerical errors. However, reducing the trust region size (e.g. ε = 0.001)
will stabilize the training but degrade the performance. The results for Beta policy in the main paper are obtained under trust
region size ε = 0.01 for TRPO and learning rate 3 · 10−5 for PPO. These hyper-parameters are chosen such that the policy
achieves fairly fast rate of learning (compared to other policy classes) at the cost of more numerical errors (which lead to
premature termination).

Others Hyper-parameters. Value functions are two-layer neural networks with 64 hidden units per layer for PPO and
ACKTR and 32 hidden units per layer for TRPO. For PPO, the learning rate is tuned from {3 · 10−5, 3 · 10−4}. For
TRPO, the KL constraint parameter ε is tuned from {0.01, 0.001}. For ACKTR, the KL constraint parameter is tuned from
{0.02, 0.002}. All other hyper-parameters are default parameters in the baselines implementations.

B. Effects of the Number of Atomic Actions
Variance of Policy Gradients. We analyze the variance of policy gradients when the continuous action space is discretized.
For an easy analysis, we assume that the policy architecture πθ is as follows: the policy πθ is in general a neural network
(or any differentiable functions) that takes state s as input, through multiple layers of transformation it will encode the
state into a hidden vector h = fθ(s). For the ith dimension of the action space, for the jth action in Ai, we output a logit
Lij = wTijh + bij ∈ R by parameters wij , bij . For any dimension i, K logits are combined by soft-max to compute the

probability of choosing action j, pij = softmax(Lij)(:=
exp(Lij)∑K−1
j=0 Lij

). As noted, the number of model parameters scale

linearly with K.

To compare the variance of policy gradients across models with varying K, we analyze the gradients of parameters θ that
encode s into h. Such parameters are shared by all models. For simplicity, we consider a one step bandit problem with
action space A = [−1, 1]. The instant reward for action a is r(a) = R,∀a where R is a fixed constant. Since we have
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(a) Gradient Variance (b) Control capacity

Figure 5. Analyzing discrete policy: (a) Variance of policy gradients on multiple tasks upon initialization, and comparison with the curve
suggested by the simplified theoretical analysis above. The horizontal axis is the number of bins K while the vertical axis is normalized
such that the value is 1.0 when K = 50. The variance saturates quickly as K ≥ 11. (b) Control capacity as a function of number of
bins K. When K is small, the control capacity is small and the policy cannot achieve good performance. When K is large, the control
capacity increases but training becomes harder, which leads to a potential drop in performance.

only one action dimension, let p(j) be the probability of taking the jth action 0 ≤ j ≤ K − 1. We also assume that upon
initialization the policy has very high entropy p(j) ≈ 1

K . The policy gradient estimator is

ĝθ = r(aj)∇θ log pθ(j), j ∼ pθ(j)

Under this setting, the policy gradient E
[
ĝθ
]

= ∇θJ(πθ) = 0 and the variance is

V
[
ĝθ
]

=

K∑
j=1

r(aj)(∇θ log p(j))2p(j)

≈ R2 1

K

K∑
j=1

(∇θ log p(j))2

≈ R2 1

K
(

K∑
j=1

(∇θLj −
1

K

K−1∑
k=0

∇θLk))2,

(5)

where approximations come from replacing p(j) ≈ 1
K . Notice that ∇θLj does not depend on N since each logit Lj has an

independent dependency on θ. Under conventional neural network initializations (all weight and bias matrices of θ and
wij , bj are independently initialized),∇θLj , 0 ≤ j ≤ K − 1 are i.i.d. random variables with their randomness stemming
from the random initialization of neural network parameters. Denote Einit

[
·
]

as the expectation w.r.t. neural network
initializations, we analyze the expectation of (5)

Einit
[
V
[
ĝθ
]]
≈ R2K − 1

K
σ2 ∼ K − 1

K
, (6)

where σ2 = Vinit
[
∇θLj

]
is the variance of the logit gradients.

Though the above derivation makes multiple restrictive assumptions, we find that it also largely matches the results for
more complex scenarios. For multiple MuJoCo tasks, we compute the empirical variance of policy gradients upon random
initializations of network parameters. In Figure 5(a) we compare the empirical variance against the predicted variance. We
normalize the variance such that the variance at K = 50 is 1.0. With the same hyper-parameters (including batch-size for
each update), policy gradients have larger variance for models with more fined discretization (large K) and will be harder to
optimize.
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Table 3. Computational costs measured in wall time on Reacher task. PPO with Gaussian policy is normalized to be 100% and we report
the normalized time for discrete policy. Each number is averaged over 3 random seeds. The increase in costs is roughly linear in K but
can be more severe when the action dimension increases.

Action size K = 5 K = 11 K = 30 K = 100

Percentage 116% 120% 143% 240%

Combined Effects of Control Capacity and Variance. When K increases the policy has larger capacity for control.
However, as analyzed above, the policy gradient variance also increases with K, which makes policy optimization more
difficult using SGD based methods.

The combined effects can be observed in Figure 5(b). We train policies with various K for a fixed number of time steps and
evaluate their performance at the end of training. We find that the best performance is obtained when 7 ≤ K ≤ 15. When
K is small (e.g. K = 2) the performance degrades drastically, due to the lack of control capacity. When K is large (e.g.
K ≈ 50), the performance only slightly degrades: this might be because the variance of the policy gradient almost saturates
when K ≥ 11 as shown in Figure 5.

Model Parameters and Training Costs. Both the number of model parameters and training costs scale linearly with K.
In Table 3 we present the computational results for the training costs: we train discrete policies (on Reacher-v1) with various
K for a fixed number of time steps and record the wall time. The results are standardized such that Gaussian policy is 100%.

C. Additional Experiments
C.1. PPO

We show results for PPO on simpler MuJoCo tasks in Figure 6. In such tasks, discrete policy does not necessarily outperform
factorized Gaussian.

(a) Reacher (b) Swimmer (c) Inverted Pendulum (d) Double Pendulum

Figure 6. MuJoCo Benchmarks: learning curves of PPO on OpenAI gym MuJoCo locomotion tasks. Each curve corresponds to a different
policy architecture (Gaussian or discrete policy with varying number of bins K = 7, 11, 15). Discrete policy significantly outperforms
Gaussian on Humanoid tasks.

C.2. TRPO

We show results for TRPO on simpler MuJoCo tasks in Figure 8. Even with simple task, discrete policy can still significantly
outperform Gaussian ((a) Reacher and (d) Double Pendulum).

C.3. ACKTR

We show results for ACKTR on a set of MuJoCo and rllab tasks in Figure 6. For tasks with relatively simple dynamics, the
performance gain of discrete policy is not significant ((a)(b)(c)). However, in Humanoid tasks, discrete policy does achieve
significant performance gain over Gaussian ((d)(e)).
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(a) Bipedal Walker (b) Lunar Lander

Figure 7. Box2D Benchmarks: learning curves of PPO on OpenAI gym Box2D locomotion tasks. Each curve corresponds to a different
policy architecture (Gaussian or discrete policy with varying number of bins K = 7, 11).

(a) Reacher (b) Swimmer (c) Inverted Pendulum (d) Double Pendulum

Figure 8. MuJoCo Benchmark : learning curves of TRPO on MuJoCo locomotion tasks. Each curve is averaged over 6 random seeds and
shows mean± std performance. Each curve corresponds to a different policy representation (Red: Implicit, Green: GMM K = 5, Yellow:
GMM K = 2, Blue: Gaussian). Vertical axis is the cumulative rewards and horizontal axis is the number of time steps.

C.4. Sensitivity to Hyper-parameters

We present the sensitivity results in Figure 11 below.

C.5. Comparison with Gaussian Policy with Big Networks

In our implementation, discrete/ordinal policy have more parameters than Gaussian policy. A natural question is whether the
gains in policy optimization is due to a bigger network. To test this, we train Gaussian policy with large networks: 2-layer
neural network with 128 hidden units per layer. In Table 4 and Table 5, we find that for Gaussian policy, bigger network
does not perform as well as the smaller network (32 hidden units per layer). Since Gaussian policy with bigger network has
more parameters than discrete policy, this validates the claim that the performance gains of discrete policy policy are not
(only) due to increased parameters. Below in Table 5 we show results for PPO and Table 4 for TRPO.

C.6. Additional Comparison with Beta policy

Chou et al. (2017) show the performance gains of Beta distribution policy for a limited number of benchmark tasks, most of
which are relatively simple (with low dimensional observation space and action space). However, they show performance
gains on Humanoid-v1. We compare the results of our Figure 10 with Figure 5(j) in (Chou et al., 2017) (assuming each
training epoch takes ≈ 2000 steps): within 10M training steps, discrete/ordinal policy achieves faster progress, reaching
≈ 4000 at the end of training while Beta policy achieves ≈ 1000. According to (Chou et al., 2017), Beta distribution can
have an asymptotically better performance with ≈ 6000, while we find that discrete/ordinal policy achieves asymptotically
≈ 5000.
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(a) Bipedal Walker (b) Lunar Lander

Figure 9. Box2D Benchmarks: learning curves of TRPO on OpenAI gym Box2D locomotion tasks. Each curve is averaged over 5 random
seeds and shows mean± std performance. Each curve corresponds to a different policy architecture (Gaussian or discrete policy with
varying number of bins K = 7, 11). Vertical axis is the cumulative rewards and horizontal axis is the number of time steps.

Table 4. Comparison of TRPO + Gaussian policy with networks of different sizes. Big network has 128 hidden units per layer while
small network has 32 hidden units per layer. Both networks have 2 layers. Small networks generally performs better than big networks.
Below we show average ± std cumulative rewards after training for 5 · 106 steps.

TASK GAUSSIAN (BIG) GAUSSIAN (SMALL)

ANT −104± 30 −94± 44
SIM. HUMAN. (L) 5.1± 0.7 6.4± 0.4
HUMANOID 501± 14 708± 43
HUMANOID (L) 20± 2 53± 9

D. Illustration of Benchmark Tasks
We present an illustration of benchmark tasks in Figure 12. All the benchmark tasks are implemented with very efficient
physics simulators. All tasks use sensory data as states and actuator controls as actions.
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(a) Reacher (b) Swimmer (c) HalfCheetah

(d) Humanoid (R) (e) Sim. Humanoid (R) (f) Humanoid

Figure 10. MuJoCo Benchmarks: learning curves of ACKTR on OpenAI gym MuJoCo locomotion tasks. Each curve is averaged over 5
random seeds and shows mean± std performance. Each curve corresponds to a different policy architecture (Gaussian or discrete policy
with varying number of bins K = 7, 11, 15). Vertical axis is the cumulative rewards and horizontal axis is the number of time steps.
Discrete policy significantly outperforms Gaussian on Humanoid tasks. Tasks with (R) are from rllab.

Table 5. Comparison of PPO + Gaussian policy with networks of different sizes. Big network has 128 hidden units per layer while small
network has 64 hidden units per layer. Both networks have 2 layers. Small networks generally performs better than big networks. Below
we show averageg ± std cumulative rewards after training for 5 · 106 steps.

TASK GAUSSIAN (BIG) GAUSSIAN (SMALL)

ANT 3712± 315 3317± 152
SIM. HUMAN. (L) 4.8± 0.3 4.9± 0.4
HUMANOID 3221± 535 3766± 413
HUMANOID (L) 499± 285 1626± 1480
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(a) Roboschool Reacher (b) Hopper (c) HalfCheetah (d) Roboschool Ant

(e) Roboschool Walker (f) Humanoid (g) Sim. Humanoid (R) (h) Humanoid (R)

Figure 11. PPO sensitivity: quantile plots of final performance on benchmark tasks in OpenAI MuJoCo, rllab and Roboschool. In each
plot, 30 different hyper-parameters are drawn for each policy (Gaussian vs. discrete policy). Reacher is trained for 106 steps, Hopper
2 · 106 steps and all other tasks about 5 · 106 steps. Tasks with (R) are from rllab.

Figure 12. Benchmark Tasks: Illustration of locomotion benchmark tasks in OpenAI gym (Brockman et al., 2016), rllab (Duan et al.,
2016) with MuJoCo (Todorov, 2008) as simulation engines (top row) and Roboschool with open source simulation engine (Schulman
et al., 2017a) (bottom row). All tasks involve using sensory data as states and actuator controls as actions.


