
Provably Robust Blackbox Optimization
for Reinforcement Learning

Krzysztof Choromanski∗
Google Brain Robotics
kchoro@google.com

Aldo Pacchiano∗
UC Berkeley

pacchiano@berkeley.edu

Jack Parker-Holder∗
Columbia University

jh3764@columbia.edu

Yunhao Tang
Columbia University

yt2541@columbia.edu

Deepali Jain
Google Brain Robotics

jaindeepali@google.com

Yuxiang Yang
Google Brain Robotics
yxyang@google.com

Atil Iscen
Google Brain Robotics
atil@google.com

Jasmine Hsu
Google Brain Robotics
hellojas@google.com

Vikas Sindhwani
Google Brain Robotics

sindhwani@google.com

Abstract

Interest in derivative-free optimization (DFO) and “evolutionary strategies” (ES)
has recently surged in the Reinforcement Learning (RL) community, with grow-
ing evidence that they can match state of the art methods for policy optimization
problems in Robotics. However, it is well known that DFO methods suffer from
prohibitively high sampling complexity. They can also be very sensitive to noisy re-
wards and stochastic dynamics. In this paper, we propose a new class of algorithms,
called Robust Blackbox Optimization (RBO). Remarkably, even if up to 23% of all
the measurements are arbitrarily corrupted, RBO can provably recover gradients
to high accuracy. RBO relies on learning gradient flows using robust regression
methods to enable off-policy updates. On several MuJoCo robot control tasks,
when all other RL approaches collapse in the presence of adversarial noise, RBO is
able to train policies effectively. We also show that RBO can be applied to legged
locomotion tasks including path tracking for quadruped robots.

1 Introduction

It is appealing to reduce policy learning tasks arising in Robotics to instances of blackbox optimization
problems of the form,

max
θ∈Rd

F (θ). (1)

Above, θ encodes a policy πθ : S → A, where S and A denote the state and action spaces, and
the function F maps θ to the total expected reward when the robot applies πθ recursively in a
given environment. In this context, the “blackbox” is an opaque physics simulator or even the
robot hardware interacting with a real environment with unknown dynamics. As a consequence,
the function F only admits point evaluations with no explicit analytical gradients available for an
optimizer to exploit.

Blackbox methods and the so-called “evolutionary strategies” (ES) are instances of derivative-free
optimization (DFO) [29, 36, 21, 19, 11] that aim to maximize F by applying various random

∗Equal contribution.

Preprint. Under review.

ar
X

iv
:1

90
3.

02
99

3v
2

 [
cs

.L
G

]
 8

 J
ul

 2
01

9

search [18] techniques, while avoiding explicit gradient computation. Typically, in each epoch the
policy parameter vector θ is updated using a gradient ascent rule that has the following general
flavor [29, 6]:

θ ← θ + η∇̂F (θ), where ∇̂F (θ) ≈ 1

l

l∑
j=1

w(θ,gi)gi, (2)

and the gradient of F at θ is estimated by evaluating F at θ ± gi for a certain choice of perturbation
directions {g1, ...,gl}. Above, the function w : R→ R translates rewards obtained by the perturbed
policies to some weights and η > 0 is a step size. For example, the setting w(θ,g) = 1

h [F (θ+hg)−
F (θ)] where g’s are the canonical directions, corresponds to the ubiquitous finite difference gradient
estimator.

Surprisingly, despite not exploiting the internal structure of the RL problem, blackbox methods can be
highly competitive with state of the art policy gradient approaches [32, 31, 20, 12], while admitting
much simpler and embarrassingly parallelizable implementations. They can also handle complex,
non-differentiable policy parameterizations, non-markovian reward structures and non-smooth hybrid
dynamics. Particularly in simulation settings, they remain a serious alternative to classical model-free
RL methods despite being among the simplest and oldest policy search techniques [33, 17, 25].

On the flip side, blackbox methods are notorious for requiring a prohibitively large number of rollouts.
This is because these methods are exclusively on-policy and extract a relatively small amount of
information from samples, compared to other model-free RL algorithms. The latter make use of the
underlying structure (e.g. Markovian property) to derive updates, in particular off-policy methods
which maintain and re-use previously collected data [23]. Indeed, the ES approach of Salimans et al.
[29] required millions of rollouts on thousands of CPUs to get competitive results.

Furthermore, several theoretical results expose a fundamental and unavoidable gap between the
performance of optimizers with access to gradients and those with access to only function evaluations,
particularly in the presence of noise [15]. Even when the blackbox is a convex function, blackbox
methods usually need more iterations than the standard gradient methods to converge, at a price that
scales with problem dimensionality [24]. Without considerable care, they are also brittle in the face
of noise and can breakdown when rewards are noisy or there is considerable stochasticity in the
underlying system dynamics.

Starting from a natural regularized regression perspective on gradient estimation, we propose two
simple enhancements to blackbox/ES techniques. First, we inject off-policy learning by reusing past
samples to estimate an entire continuous local gradient field in the neighborhood of the current iterate.
Secondly, by drawing on results from compressed sensing and error correcting codes [10, 4], we
propose a robust regression LP-decoding framework that is guaranteed to provide provable accurate
gradient estimates in the face of up to 23% arbitrary noise, including adversarial corruption, in
function evaluations. The resulting method (abbreviated as RBO) shows dramatic resilience to
massive measurement corruptions on a suite of 8 MuJoCo robot control tasks when competing
algorithms appear to fall apart. We also observe favorable comparisons on walking and path tracking
tasks on quadruped robots.

We start this paper with a simple regression perspective on blackbox optimization, introduce our
algorithm and its off-policy elements with a striking theoretical result on its robustness, followed by a
comprehensive empirical analysis on a variety of policy search problems in Robotics.

2 A Regularized Regression Perspective on Gradient Estimation

We begin by presenting a natural regression perspective on gradient estimation [7] for derivative-free
optimization. First, recall the notion of a Gaussian smoothing Fσ of a given blackbox function F
defined as,

Fσ(θ) = Eg∈N (0,Id)[F (θ + σg)] = (2π)−
d
2

∫
Rd
F (θ + σg)e−

‖g‖2
2 dg. (3)

It turns out that the updates proposed in the Evolutionary Strategies approach of Salimans et. al.[29]
can be written as:

θ ← θ + η∇̂MCFσ(θ), (4)

2

where ∇̂MCFσ(θ) is the Monte Carlo (MC) estimator of the gradient∇MCFσ(θ) of Fσ at θ.

Since the formula for the gradient∇MCFσ(θ) is itself given as an expectation over Gaussian distri-
bution, namely: ∇Fσ(θ) = 1

σEg∼N (0,Id)[F (θ + σg)g], MC estimators can be easily constructed,
simply by sampling k independent Gaussian perturbations σgi for i = 1, ..., k and evaluating F at
points determined by these perturbations. There exist several such unbiased MC estimators which
apply different variance reduction techniques [6, 28, 5, 35]. Without loss of generality, we take an
estimator using forward finite difference expressions [6] which is of the form:

∇̂AT
MCFσ(θ) =

1

kσ

k∑
i=1

(F (θ + σgi)− F (θ))gi. (5)

One can notice by analyzing the Taylor expansion of F at θ that forward finite difference expres-
sions F (θ+σgi)−F (θ)

σ in the formula above can be reinterpreted as estimations of the dot-products
∇F (θ)Tgi. In other words, by querying blackbox RL function F at θ with perturbations σgi, one
effectively collects lots of noisy estimates of∇F (θ)Tgi.

The task then is to recover the unknown gradient from these estimates. This observation is the key to
formulating blackbox function gradient estimation as a regression problem. This approach has two
potential benefits. Firstly, it opens blackbox optimization to the wide class of regularized regression-
based methods capable of recovering gradients more accurately than standard MC approaches in the
presence of substantial noise. Secondly, it relaxes the independence condition regarding samples
chosen in different iterations of the optimization, allowing for samples from previous iterations to be
re-used.

As we will see later, the latter will eventually lead to more sample efficient methods. Interestingly,
we will show that the recent orthogonal method for variance reduction in ES[6] can be interpreted as
a particular instantiation of the regression-based approach.

2.1 A simple regression-based algorithm

Given scalars {F (θ + zi)}ki=1 (corresponding to rewards obtained by different perturbations zi of
the policy encoded by θ), we formulate the regression problem by considering {z1, ..., zk} as input
vectors with target values yi = F (θ + zi)− F (θ) for i = 1, ..., k. We propose to produce a gradient
estimator by solving the following regression problem:

∇̂RBOF (θ) = arg min
v∈Rd

1

2k
‖y − Zv‖pp + α‖v‖qq, (6)

where p, q ≥ 1, Z ∈ Rk×d is a matrix with the ith row encoding perturbations zi. The sequences of
rows in Z are sampled from some given joint multivariate distribution P ∈ P(Rd × ...Rd) and α > 0
is a regularization parameter.

As already mentioned, perturbations zi do not need to be taken from the Gaussian multivariate
distribution and they do not even need to be independent. Note that various known regression
methods arise by instantiating the above optimization problems with different values of p, q and α. In
particular, p = q = 2 leads to the ridge regression [2], p = 2, q = 1 to Lasso [30], p = 1, q = 2 to
robust regression with least absolute deviations loss, and and p = 1, α = 0 to LP decoding [10].

2.2 Using off-policy samples

Gradients reconstructed by the above regression problem (Equation 6) can be given to the ES
optimizer. Furthermore, at any given iteration t the ES optimizer can reuse evaluations of these points
θt−1 +σg

(t−1)
i that are closest to current point θt, .e.g. top τ -percentage for the fixed hyperparameter

0 < τ < 1. Thus the regression interpretation enables us to go beyond the rigid framework of
independent sets of samples. This algorithm, described in more detail in Algorithm 1 box (l.8 in
the algorithm is a simple projection step restricting each parameter vector to be within a domain
of allowable policies), plays the role of our base RBO variant and the backbone of our algorithmic
approach. It already outperforms state-of-the-art ES methods on benchmark RL tasks. In the next
section we will explain how it can be further refined to achieve even better performance.

3

2.3 Regression versus ES with orthogonal MC estimators

Here we show that ES methods based on orthogonal Monte Carlo estimators [6, 28], that were
recently demonstrated to improve standard ES algorithms for RL, can be thought of as special cases
of the regression approach.

Orthogonal MC estimators rely on pairwise orthogonal perturbations σgi that can be further renor-
malized to have length l = σ

√
d. The renormalization ensures that the marginal distributions of

the orthogonal samples are the same as the unstructured ones, which render the orthogonal MC
estimators unbiased. Further, the coupling induces correlation between perturbations for provable
variance reduction.

Algorithm 1 Robust Blackbox Optimization Algorithm via Regression
Input: F : Θ→ R, scaling parameter sequence {σ}t, initial θ0 = u0 ∈ Θ, number of perturbations
k, step size sequence {ηt}t, sampling distribution P ∈ P(Rd), parameters p, q, α, τ , number of
epochs T .
Output: Vector of parameters θT .
1. Initialize Θpert

old = ∅, Rold = ∅ (|Θpert
old | = |Rold|).

for t = 0, 1, . . . , T − 1 do
1. Compute all distances from ut to θpert

old ∈ Θpert
old .

2. Find the closest τ -percentage of vectors from Θpert
old and call this set Θnear

τ . Call the corre-
sponding subset of Rold as Rnear

τ .
3. Sample g

(t)
1 , · · · ,g(t)

k−|Θnear
τ | from P.

4. Compute F (θt) and F (θt + σtg
(t)
j) for all j.

5. Let Zt ∈ Rk×d be a matrix obtained by concatenating rows given by σt × g
(t)
i and those of

the form: pi − θt, where pi ∈ Θnear
τ .

6. Let yt ∈ Rk be the vector obtained by concatenating values F (θt + σtg
(t)
j) − F (θt) with

those of the form: ri − F (θt), where ri ∈ Rnear
τ .

7. Let ∇̂RBOF (θt) be the resulting vector after solving the following optimization problem:

∇̂RBOF (θt) = arg min
v∈Rd

1

2k
‖yt − Ztv‖pp + α‖v‖qq,

8. Take ut+1 = θt + ηt∇̂RBOF (θt)
9. Take θt+1 = arg maxθ∈Θ〈θ,ut+1〉 − 1

2‖θ‖
2
2.

10. Update Θpert
old to be the set of the form θt + zi, where zis are rows of Zt and θt, and Rold to

be the set of the corresponding values F (θt + zi) and F (θt).

Orthogonal MC estimators can be easily constructed via Gram-Schmidt orthogonalization process
from the ensembles of unstructured independent samples [37]. The following is true:
Lemma 1. The class of the orthogonal Monte Carlo estimators using renormalization with k = d
orthogonal samples is equivalent to particular sub-classes of RBO estimators with p = q = 2.

Proof. The solution to the ridge regression problem for gradient estimation (p = q = 2) is of the
form

∇̂RBOFridge(θ) = (Z>t Zt + 2dαId)
−1Z>t yt (7)

By the assumptions of the lemma we get: ZtZ>t = σ2dId, thus Z>t = σ2dZ−1
t , and we obtain:

∇̂RBOFridge(θ) =
1

dσ
G>ortyt ·

σ2

σ2 + 2α
, (8)

where G>ort is a matrix with rows given by orthogonal Gaussian vectors gort
i . Thus, if we take

σ = σMC, where σMC stands for the smoothing parameter in the MC estimator and furthermore,
η = ηMC

σ2+2α
σ2 , where ηMC stands for the steps size in the algorithm using that MC estimator, then

the RBO estimator is equivalent to the orthogonal MC and the proof is completed.

4

3 Learning Gradient Flows for off-policy sample reuse

Algorithm 1 reconstructs the gradient of F only at θ. To refine this algorithm, consider reconstructing
the gradient of F at an entire continuous neighborhood of θ instead of θ alone. The idea is to use
values of F computed in the neighborhood N (θt) of θt to approximate the gradient field Fgrad of F
in the entire neighborhoodN (θt) rather than just at θt. This method utilizes past function evaluations
F to an even bigger extent. In this approach k function values from iteration t of the algorithm are
used to reconstruct several gradients in the neighborhood N (θt) of θt as opposed to the baseline ES
algorithm, where each value is used for only one gradient or Algorithm 1, where some values (from
the closest τ -percentage of the new point θt+1) are reused.

(a) Vanilla ES (b) RBO (c) RBO + gradient flows

Figure 1: Comparison of different ES optimization methods: (a) Vanilla ES: to update current point
θt, independent perturbations pi are chosen. Since perturbations are not reused, all perturbations qi
used in θt+1 are different from the previous ones. (b) Base RBO: perturbations no longer need to be
independent, the τ -percentage of old perturbations closest to the new point θt+1 are reused. Gradient
in θt is reconstructed via regression. (c) RBO with gradient flows: gradients are recovered in several
point of the neighborhood of θt via regression. An approximation of the gradient field in N (θt) is
computed via matrix-valued kernel interpolation and the update of θt is conducted via gradient flow.

The gradient at point θt + σgti is reconstructed in the analogous way as in Algorithm 1, with the use
of the estimator ∇̂RBOF (θt + σgti), where data for the regressor consists of the same k+ 1 points as
in Algorithm 1, namely: vector θt and vectors θt + σgtj for j = 1, ..., k. The only difference is that
now θt + σgti plays the role of the base vector and other k vectors are interpreted as its perturbed
versions. All the reconstructed gradients form a set F̂ sparse

grad , which can be thought of as a sparse
approximation of the gradient field Fgrad of F in N (θt).

3.1 Interpolating gradient field via matrix-valued kernels

The set of gradients F̂ sparse
grad is used to create an interpolation F̂grad of the true gradient field Fgrad in

N (θt) via matrix-valued kernels. Below we give a short overview over the theory of matrix-valued
kernels [1, 22, 27], which suffices to explain how they can be applied for interpolation.

Definition 1 (matrix-valued kernels). A function K : Rd × Rd → Rm × Rm is a matrix-valued
kernel if for every x,y ∈ Rd the following holds:

K(x,y) = K(y,x)>. (9)

We call K a positive definite kernel if furthermore the following holds. For every set X =
{x1, ...,xl} ⊆ Rd the block matrix K(X ,X) = (K(xi,xj))i,j∈{1,...,l} is positive definite.

As we see, matrix-valued kernels are extensions of their scalar counterparts. As standard scalar-
valued kernels can be used to approximate scalar fields via functions from reproducing kernel Hilbert
spaces (RKHS) corresponding to these kernels, matrix-valued kernels can be utilized to interpolate
vector-valued fields. The interpolation problem can be formulated as:

F∗ = argmin

m∑
j=1

1

N

N∑
i=1

(Fj(xi)− yji)
2 + λ‖F‖2K, (10)

5

where F : Rd → Rm is a vector-valued function from the RKHS corresponding to K, scalar yji is the
jth component of the ith vector-valued observations yi ∈ Rd for the ith sample xi from the set X of
N input datapoints and ‖·‖K stands for the norm that the above RKHS is equipped with. The solution
to the optimization problem (Equation 10) is given by the formula: F(x) =

∑N
i=1K(xi,x)ci, where

vectors ci ∈ Rd are given by:

c = (K(X ,X) + λNINd×Nd)
−1y. (11)

For separable matrix-valued kernels [34], such a problem can be solved at a complexity that scales no
worse than standard scalar kernel methods. Above, c ∈ RNd is a concatenations of vectors c1, ..., cN
and y is a concatenation of the observations y1, ...,yN .

Gradient Ascent Flow: The RBO casts gradient field reconstruction problem as the above interpola-
tion problem, where: X = {θt, θt + σgt1, ..., θt + σgtk} and for xi ∈ X we have: yi = ∇̂RBOF (xi).
After obtaining the solution F̂grad = F∗, the update of the current point θt is obtained via the standard
gradient ascent flow in the neighborhood of θt, which is the solution to the following differential
equation:

dθ/dt = F̂grad(θ), (12)

whose solution can be numerically obtained using such methods as Euler integration. The comparison
of the presented RBO algorithms with baseline ES is schematically presented in Fig. 1.

3.2 Time Complexity and Distributed Implementation

Our RBO implementation relies on distributed computations, where different workers evaluate F in
different subsets of perturbations. The time needed to construct all approximate gradients yi in a
given iteration of the algorithm is negligible compared to the time needed for querying F (because
calculations of yi can be also easily parallelized). Computations of c from Equation 11 can be
efficiently conducted using separability and random feature maps[26]. We also noted that in practice
the gradient-flow extension of the RBO requires many fewer perturbations per iteration than baseline
ES and one can use state-of-the-art compact neural networks from [6], which encode RL policies
with a few hundred parameters. This further reduces the cost of computing the gradient field.

4 Provably Robust Gradient Recovery

It turns out that the RBO with LP decoding (p = 1, α = 0) is particularly resilient to noisy
measurements. This is surprising at first glance, since we empirically tested (see: Section 5) that it is
true even when a substantial number of measurements are very inaccurate and when the assumption
that noise for each measurement is independent clearly does not hold (e.g. for noisy dynamics or
when measurements are spread into simulator calls and real hardware experiments).

In this section we explain why it is the case. We leverage the results from a completely different
field: adversarial attacks for database systems [10] and explain why RBO with LP decoding can
create an accurate sparse approximation F̂grad to the true gradient field Fgrad with loglinear number
of measurements per point even if up to ρ∗ = 0.2390318914495168... of all the measurements are
arbitrarily corrupted. Interestingly, we do not require any assumptions regarding sparsity of the
gradient vectors.

We also present convergence results for RBO under certain regularity assumptions regarding functions
F . These can be translated to the results on convergence to local maxima for less regular mappings F .
All proofs as well as standard definitions of L-Lipschitz, λ-smooth and µ-strongly concave functions
are given in the Appendix.

Definition 2 (coefficient ρ∗). Let X ∼ N (0, 1) and denote: Y = |X|. Let f be the pdf of Y and
F be its cdf function. Define g(x) =

∫∞
x
yf(y)dy. Function g is continuous and decreasing in the

interval [0,∞] and furthermore g(0) = E[Y]. Since limx→∞ g(x) = 0, there exists x∗ such that
g(x∗) = E[Y]

2 . We define ρ∗ as:
ρ∗ = 1− F−1(x∗). (13)

Its exact numerical value is ρ∗ = 0.2390318914495168....

6

The following result shows the robustness of the RBO gradients under substantial noise:
Lemma 2. There exist universal constants C, c > 0 such that the following holds. Let F : Θ→ R
be a λ−smooth function. Assume that at most the ρ∗-fraction of all the measurements are arbitrarily
corrupted and the other ones have error at most ε. If σt =

√
ε
dλ , k ≥ Cd and RBO uses LP decoding,

with probability p = 1− exp (−cd) the following holds:

‖∇RBOF (θt)−∇F (θ)‖2 ≤ 2C
√
εdλ. (14)

We are ready to state our main theoretical result.
Theorem 1. Consider a blackbox function F : Θ → R. Assume that F is concave, Lipschitz
with parameter L and smooth with smoothness parameter λ. Assume furthermore that domain
Θ ⊂ Rd is convex and has l2 diameter B < ∞. Consider Algorithm 1 with p = 1, α = 0, τ =
0, σt ≤ L

dλ
√
t+1

, ηt = B
L
√
t+1

and the noisy setting in which at each step a fraction of at most
ρ∗ of all measurements F (θt + σtg

t
j) are arbitrarily corrupted for j = 1, 2, ..., k. There exists a

universal constant c1 > 0 such that for any γ ∈ (0, 1) and T ≤ γ exp(c1d), the following holds with
probability at least 1− γ:

F (θ∗)−

[
1

T

T−1∑
t=0

F (θt)

]
≤ 13

2
BL 1√

T
,

where θ∗ = arg maxθ∈Θ F (θ). If F presents extra curvature properties such as being strongly
concave, we can get a linear convergence rate. The following theorem holds:
Theorem 2. Assume conditions from Theorem 1 and furthermore that F is strongly concave with
parameter µ. Take Algorithm 1 with p = 1, α = 0, τ = 0, σt ≤ L2

dBµλ(t+1) , ηt = 1
µ(t+1) acting in

the noisy environment in which at each step a fraction of at most ρ∗ of all measurements F (θt+σtg
t
j)

are arbitrarily corrupted for j = 1, 2, ..., k. There exists a universal constant c1 > 0 such that for
any γ ∈ (0, 1) and T ≤ γ exp(c1d), with probability at least 1− γ:

F (θ∗)−

[
1

T

T−1∑
t=0

F (θt)

]
≤ 6L2

µ

(1 + log(T))

T
.

To summarize, even if up to 23% of all the measurements are arbitrarily corrupted, RBO can provably
recover gradients to high accuracy! We provide empirical evidence of this result next.

5 Empirical Analysis

Figure 2: Performance of RBO, ARS, PPO and TRPO on seven benchmark RL environments. Results presented
are the median from 3 seeds, with the min and max shaded. In each case, 20% of the rewards are significantly
corrupted. In some cases, this noise led to drastically worse performance for non-RBO methods, which we omit
from the plots, but include in the tabular data in Table 1.

7

The real world is often far noisier than environments typically used for benchmarking RL algorithms.
With this in mind, the primary goal of our experiments is to demonstrate that RBO is able to efficiently
learn good policies in the presence of noise, where other approaches fail. To investigate this, we
consider two settings:

1. OpenAI Gym [3] MuJoCo environments, where 20% of the measurements are significantly
corrupted (we show that adding noise presents a challenge to baseline algorithms).

2. Real-world quadruped locomotion tasks, where sim-to-real transfer is non-trivial.

We run RBO with LP-decoding to obtain provably noise-robust reconstruction of ES gradients.

OpenAI Gym: We conducted an exhaustive analysis of the proposed class of RBO algorithms on
the following OpenAI Gym [3] benchmark RL tasks: Swimmer, HalfCheetah, Hopper, Walker2d,
Humanoid, Pusher and Reacher. All but HalfCheetah Linear experiments are for a policy encoded
by feedforward neural networks with two hidden layers of size h = 41 each and tanh nonlinearities.
HalfCheetah Linear is for the linear architecture. We compare RBO to state-of-the-art ES algorithm
ARS [21], as well as two state-of-the art policy gradient algorithms: TRPO [31] and PPO [32]. In
all cases, we corrupt 20% of the measurements. As we show in Fig. 2, the noise often renders the
other algorithms unable to learn optimal policies, yet RBO remains unscathed and consistently learns
good policies for all tasks. Under the presence of substantial noise the other methods often drastically
underperform RBO, as we show in Table 1.

Median reward after # rollouts

Environment Rollouts RBO ARS TRPO PPO

HalfCheetah (Linear) 2.105 4220 4205 -Inf -Inf
HalfCheetah (Toeplitz) 2.105 3299 3163 -Inf -Inf
Swimmer 2.105 360 -Inf 32 30
Walker2d 2.106 2230 172 996 312
Hopper 1.106 1503 1408 427 256
Humanoid 5.106 4865 2355 2028 2129
Pusher 1.106 -155 -199 -Inf -Inf
Reacher 5.105 -7 -19 -Inf -Inf

Table 1: Median rewards obtained across k = 5 seeds for seven RL environments. Bold represents the best
performing algorithm in each environment, red indicates failure to learn.

Quadruped Locomotion: We tested RBO on quadruped locomotion tasks for a Minitaur robot [16]
(see: Fig. 3), with different reward functions for different locomotion tasks. Minitaur has 4 legs and
8 degrees of freedom, where each leg has the ability to swing and extend to a certain degree using
the PD controller provided with the robot. We train our policies in simulation using the pybullet
environment modeled after the robot [8]. To learn walking for quadrupeds, we use architectures
called Policies Modulating Trajectory Generators (PMTGs) that have been recently proposed in
[14]. They incorporate basic cyclic characteristics of the locomotion and leg movement primitives by
using trajectory generators, a parameterized function that provides cyclic leg positions. The policy
is responsible for modulating and adjusting leg trajectories. The results fully support our previous
findings. While without noise RBO and ARS (used as state-of-the-art method for these tasks [14])
perform similarly, in the presence of noise RBO is superior to ARS.

Figure 3: Left: The Minitaur robot. Right: Performance of RBO and ARS for two Minitaur simulated
environments: forward walking (without noise and with 25% noisy measurements) and path tracking with 20%
noisy measurements.

8

6 Conclusion
We proposed a new class of ES algorithms, called RBO, for optimizing RL policies that utilize
gradient flows induced by vector field interpolation via matrix-valued kernels. The interpolators rely
on general regularized regression methods that provide sample complexity reduction through sample
reuse. We show empirically and theoretically that RBO is much less sensitive to noisy measurements,
which are notoriously ubiquitous in robotics applications, than state-of-the-art baseline algorithms.

References

[1] M. A. Álvarez, L. Rosasco, and N. D. Lawrence. Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning, 4(3):195–266, 2012.

[2] H. Avron, K. L. Clarkson, and D. P. Woodruff. Sharper bounds for regression and low-rank
approximation with regularization. CoRR, abs/1611.03225, 2016.

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym, 2016.

[4] E. Candes and T. Tao. Decoding by linear programming. arXiv preprint math/0502327, 2005.
[5] K. Choromanski, M. Rowland, W. Chen, and A. Weller. Unifying orthogonal monte carlo

methods. In International Conference on Machine Learning, pages 1203–1212, 2019.
[6] K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller. Structured evolution

with compact architectures for scalable policy optimization. In Proc. of the 35th Int. Conf. on
Machine Learning, ICML 2018, Stockholm, Sweden, July 10-15, 2018, pages 969–977, 2018.

[7] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to derivative-free optimization,
volume 8. Siam, 2009.

[8] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2017.

[9] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov. Openai baselines. https://github.com/openai/baselines, 2017.

[10] C. Dwork, F. McSherry, and K. Talwar. The price of privacy and the limits of lp decoding. In
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 85–94.
ACM, 2007.

[11] S. Ha and C. K. Liu. Evolutionary optimization for parameterized whole-body dynamic motor
skills. In 2016 IEEE International Conference on Robotics and Automation, ICRA 2016,
Stockholm, Sweden, May 16-21, 2016, pages 1390–1397, 2016.

[12] P. Hämäläinen, A. Babadi, X. Ma, and J. Lehtinen. PPO-CMA: proximal policy optimization
with covariance matrix adaptation. CoRR, abs/1810.02541, 2018.

[13] E. Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in
Optimization, 2(3-4):157–325, 2016.

[14] A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani, and V. Vanhoucke.
Policies modulating trajectory generators. In 2nd Annual Conference on Robot Learning, CoRL
2018, Zürich, Switzerland, 29-31 October 2018, Proceedings, pages 916–926, 2018.

[15] K. G. Jamieson, R. Nowak, and B. Recht. Query complexity of derivative-free optimization. In
Advances in Neural Information Processing Systems, pages 2672–2680, 2012.

[16] G. Kenneally, A. De, and D. E. Koditschek. Design principles for a family of direct-drive legged
robots. IEEE Robotics and Automation Letters, 1(2):900–907, 2016.

[17] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.
In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 3, pages 2619–2624. IEEE, 2004.

[18] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM review, 45(3):385–482, 2003.

[19] J. Lehman, J. Chen, J. Clune, and K. O. Stanley. ES is more than just a traditional finite-
difference approximator. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pages 450–457, 2018.

9

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint:1509.02971, 2015.

[21] H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach to
reinforcement learning. CoRR, abs/1803.07055, 2018.

[22] C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Computation,
17(1):177–204, 2005.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Ried-
miller. Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

[24] Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. Found.
Comput. Math., 17(2):527–566, Apr. 2017.

[25] J. Peters and S. Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2219–2225. IEEE, 2006.

[26] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pages 1177–1184, 2008.

[27] M. Reisert and H. Burkhardt. Learning equivariant functions with matrix valued kernels. Journal
of Machine Learning Research, 8:385–408, 2007.

[28] M. Rowland, K. Choromanski, F. Chalus, A. Pacchiano, T. Sarlos, R. E. Turner, and A. Weller.
Geometrically coupled monte carlo sampling. In accepted to NIPS’18, 2018.

[29] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. 2017.

[30] F. Santosa and W. W. Symes. Linear inversion of band-limited reflection seismograms. In SIAM
Journal on Scientific and Statistical Computing, pages 1307–1330, 1986.

[31] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International Conference on Machine Learning (ICML), 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2016-2018.

[33] C. Shu, H. Ding, and N. Zhao. Numerical comparison of least square-based finite-difference
(lsfd) and radial basis function-based finite-difference (rbffd) methods. Computers & Mathe-
matics with Applications, 51(8):1297–1310, 2006.

[34] V. Sindhwani, H. Q. Minh, and A. C. Lozano. Scalable matrix-valued kernel learning for
high-dimensional nonlinear multivariate regression and granger causality. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 586–595. AUAI Press,
2013.

[35] Y. Tang, K. Choromanski, and A. Kucukelbir. Variance reduction for evolution strategies via
structured control variates. arXiv preprint arXiv:1906.08868, 2019.

[36] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural evolution
strategies. Journal of Machine Learning Research, 15:949–980, 2014.

[37] F. X. Yu, A. T. Suresh, K. M. Choromanski, D. N. Holtmann-Rice, and S. Kumar. Orthogonal
random features. In Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
1975–1983, 2016.

10

7 Appendix

7.1 Definitions

Here we introduce the definitions of λ-smoothenss and L-lipshitz. These are standard definitions in
the optimization literature which we reproduce here for clarity (see for example [13]).
Definition 3. (λ-smoothness): A differentiable concave function F : Θ → R is smooth with
parameter λ > 0 if for every pair of points x, y ∈ Θ:

‖∇F (y)−∇F (x)‖2 ≤ λ‖y − x‖2
If F is twice differentiable it is equivalent to −λI � ∇2F (x) � 0 for all x ∈ Θ.
Definition 4. (L-Lipschitz): We say that F : θ → R is Lipschitz with parameter L > 0 if for all
x, y ∈ Θ it satisfies |F (x)− F (y)| ≤ L‖x− y‖2.
Definition 5. (µ-Strong Concavity): A function F : Θ→ R is strongly concave with parameter µ if:

F (y) ≤ F (x) + 〈∇F (x), y − x〉 − µ

2
‖y − x‖22

7.2 Proof of Lemma 2

In this section we prove Lemma 2 which we reproduce below for readability. This result is concerned
with the case when a constant proportion of the measurements are arbitrarily corrupted, while the
remaining ones are corrupted by a small amount ε. We quantify the degree of corruption experienced
by our gradient estimator. Let ∇F (θt) be the real gradient of F at θt. Before proving the main
Lemma of this section, let’s show that whenever σt is very small, and the evaluation of F is noiseless,
a difference of function evaluations is close to a dot product between the gradient of F and the
displacement vector.

Lemma 3. F (θt + σtv
(t)
j)− F (θt) = 〈∇F (θt), σtg

(t)
j 〉+ ξt with |ξt| ≤ σ2

t dλ.

This follows immediately from a Taylor expansion and the smoothness assumption on F .
Lemma 4. There exist universal constants C, c > 0 such that the following holds. Let F : Θ→ R
be a λ−smooth function. Assume that at most the ρ∗-fraction of all the measurements are arbitrarily
corrupted and the other ones have error at most ε. If σt =

√
ε
dλ , k ≥ Cd and RBO uses LP decoding,

the following holds with probability p = 1− exp (−cd):

‖∇RBOF (θt)−∇F (θ)‖2 ≤ 2C
√
εdλ. (15)

Proof. We use F (θt +σtg
(t)
j) as proxy measurements for 〈∇F (θt), σtg

(t)
j 〉. Since F (θt +σtv

(t)
j)−

F (θt) = 〈∇F (θt), σtg
(t)
j 〉 + ξt with |ξt| ≤ σ2

t dλ, and we assume the measurements of F (θt +

σtg
(t)
j)− F (θ) are either completely corrupted or corrupted by a noise of magnitude at most ε, the

total displacement for the normalized dot product component of the objective equals σtdλ + ε
σt

.
Setting σt =

√
ε
dλ means the total error can be driven down to 2

√
εdλ by this choice of σt. After

these observations, a direct application of Theorem 1 in [10] yields the result.

Notably, the error in Equation 15 cannot be driven to zero unless the errors of magnitude ε are driven
to zero themselves. This is in direct contrast with the supporting lemma we prove in the next section
as a stepping stone towards proving Thoerem 1. Nonsurprisingly our result has dependence on the
irreducible error ε. There is no way to get around the dependence on this error.

7.3 Proof of Theorem 1

We start with a result that is similar in spirit to Lemma 2. The assumptions behind Theorem 1 differ
from those underlying Lemma 2 in that we only assume the presence of a constant fraction of arbitrary
perturbations on the measurements. All the remaining measurements are assumed to be exact. We
show the recovered gradient ∇̂RBO is close to the true gradient. This distance is controlled by the
smoothing parameters {σt}.

11

Lemma 5. There exist universal constants c1, c2 such that if for any t if up to ρ∗ fraction of the
entries of yt are arbitrarily corrupted, the gradient recovery optimization problem with input θt
satisfies:

‖∇̂RBOF (θt)−∇F (θt)‖ ≤ σtdλ (16)
Whenever k ≥ c1d and with probability 1− exp (−c2d)

The proof of Lemma 5 and the constants c1, c2 are a result of a direct application of Theorem 1 in
[10].

Assume from now on the domain Θ ⊂ Rd is convex and has l2 diameter B <∞. We can now show
the first order Taylor approximation of F around θt that uses the true gradient and the one using the
RBO gradient are uniformly close:
Lemma 6. The following bound holds: For all θt ∈ Θ:

sup
θ∈Θ
|〈θ − θt, ∇̂RBOF (θt)〉 − 〈θ − θt,∇F (θt)〉| ≤ Bσtdλ

The next lemma provides us with the first step in our convergence bound:
Lemma 7. For any θ∗ in Θ, it holds that:

2 (F (θ∗)− F (θt)) ≤
‖θt − θ∗‖22 − ‖θt+1 − θ∗‖22

ηt

+ ηt (‖∇F (θt)‖+ σtdλ)
2

+ 2Bσtdλ

Proof. Recall that θt+1 is the projection of ut+1 to a convex set Θ. And that ut+1 = θt +

ηt∇̂RBOF (θt). As a consequence:

‖θt+1 − θ∗‖2 ≤ ‖θt + ηt∇̂RBOF (θt)− θ∗‖2

= ‖θt − θ∗‖2 + η2
t ‖∇̂RBOF (θt)‖2

− 2ηt〈∇̂RBOF (θt), θ
∗ − θt〉

(17)

Lemma 5 and the triangle inequality imply:
‖∇̂RBOF (θt)‖2 ≤ (‖∇F (θt)‖+ σtdλ)

2

This observation plus Lemma 6 applied to Equation 19 implies:

2〈∇F (θt), θ
∗ − θt〉 ≤

‖θt − θ∗‖22 − ‖θt+1 − θ∗‖22
ηt

+ ηt (‖∇F (θt)‖+ σtdλ)
2

+ 2Bσtdλ

Since concavity of F implies F (θ∗)− F (θt) ≤ 〈∇F (θt), θ
∗ − θt〉, the result follows.

We proceed with the proof of Theorem 1:

2

T−1∑
t=0

(F (θ∗)− F (θt)) ≤
T−1∑
t=0

‖θt − θ∗‖22 − ‖θt+1 − θ∗‖22
ηt

+

T−1∑
t=0

ηt (‖∇F (θt)‖+ σtdλ)
2

+ 2Bσtdλ

≤
T−1∑
t=0

‖θt − θ ∗ ‖2
(

1

ηt
− 1

ηt−1

)

+

T−1∑
t=0

ηt(L+ σtdλ)2 + 2Bσtdλ,

(18)

12

where we set 1
η−1

= 0. The first inequality is a direct consequence of Lemma 7. The second inequality
follows because ‖θT − θ∗‖ ≥ 0 and ‖∇F (θ)‖ ≤ L for all θ ∈ Θ.

As long as, σt ≤ L
dλ
√
t+1

and ηt = B
L
√
t+1

we have:

T−1∑
t=0

F (θ∗)− F (θt) ≤
13

2
BL
√
T

Since
∑T
t=1

1√
t
≤ 2
√
T , Theorem 1 follows.

7.4 Proof of Theorem 2

In this section we flesh out the convergence results for robust gradient descent when F is assumed to
be Lipschitz with parameter L, smooth with parameter λ and strongly concave with parameter µ.

Lemma 8. For any θ∗ in Θ, it holds that:

2 (F (θ∗)− F (θt)) ≤
‖θt − θ∗‖22 − ‖θt+1 − θ∗‖22

ηt
− µ‖θt − θ∗‖2+

ηt (‖∇F (θt)‖+ σtdλ)
2

+ 2Bσtdλ

Proof. Recall that θt+1 is the projection of ut+1 to a convex set Θ. And that ut+1 = θt +

ηt∇̂RBOF (θt). As a consequence:

‖θt+1 − θ∗‖2 ≤ ‖θt + ηt∇̂RBOF (θt)− θ∗‖2

= ‖θt − θ∗‖2 + η2
t ‖∇̂RBOF (θt)‖2

− 2ηt〈∇̂RBOF (θt), θ
∗ − θt〉

(19)

Lemma 5 and the triangle inequality imply:

‖∇̂RBOF (θt)‖2 ≤ (‖∇F (θt)‖+ σtdλ)
2

This observation plus Lemma 6 applied to Equation 19 implies:

2〈∇F (θt), θ
∗ − θt〉 ≤

‖θt − θ∗‖22 − ‖θt+1 − θ∗‖22
ηt

+ ηt (‖∇F (θt)‖+ σtdλ)
2

+ 2Bσtdλ

Since strong concavity of F implies F (θ∗)− F (θt) ≤ 〈∇F (θt), θ
∗ − θt〉 − µ

2 ‖θt − θ
∗‖2 the result

follows.

The proof of Theorem 2 follows from the combination of the last few lemmas. Indeed, we have:

13

2

T−1∑
t=0

(F (θ∗)− F (θt)) ≤
T−1∑
t=0

‖θt − θ∗‖22 − ‖θt+1 − θ∗‖22
ηt

−

µ‖θt − θ∗‖2+

T−1∑
t=0

ηt (‖∇F (θt)‖+ σtdλ)
2

+ 2Bσtdλ

≤
T−1∑
t=0

‖θt − θ ∗ ‖2
(

1

ηt
− 1

ηt−1
− µ

)
︸ ︷︷ ︸

I

+

T−1∑
t=0

ηt(L+ σtdλ)2 + 2Bσtdλ,

where we set 1
η−1

= 0. the first inequality is a direct consequence of Lemma 8. The second inequality
follows because ‖θT −θ∗‖ ≥ 0 and ‖∇F (θ)‖ ≤ L for all θ ∈ Θ. Since ηt = 1

µ∗(t+1) , 1
ηt
− 1
ηt−1

= µ

for all t = 0, · · · , T − 1 the term labeled I in the inequality above vanishes.

As long as σt ≤ L2

dBµλ(t+1) , we have:

T−1∑
t=0

F (θ∗)− F (θt) ≤
6L2

µ
(1 + log(T))

Since
∑T
t=1

1
t ≤ 1 + log(T), Theorem 2 follows.

7.5 Further experimental details

In all experiments we used learning rate η = 0.01. ES algorithms (RBO and ARS) were applying
smoothing parameter σ = 0.1. Furthermore, ARS used both state and reward renormalization, as
described in [21]. In RBO experiments with gradient flows we used matrix-valued kernels based on
the class of radial basis function scalar kernels (RBFs). Measurement noise was added by corrupting
certain percentages of the computed rewards at each iteration of the algorithm.

We used implementation of the Trust Region Policy Optimization (TRPO) [31] algorithm from [9].
We applied default hyper-parameters. Similarly, we used Proximal Policy Optimization (PPO) [32]
implementation from [9] and applied default hyper-parameters.

14

	1 Introduction
	2 A Regularized Regression Perspective on Gradient Estimation
	2.1 A simple regression-based algorithm
	2.2 Using off-policy samples
	2.3 Regression versus ES with orthogonal MC estimators

	3 Learning Gradient Flows for off-policy sample reuse
	3.1 Interpolating gradient field via matrix-valued kernels
	3.2 Time Complexity and Distributed Implementation

	4 Provably Robust Gradient Recovery
	5 Empirical Analysis
	6 Conclusion
	7 Appendix
	7.1 Definitions
	7.2 Proof of Lemma ??
	7.3 Proof of Theorem ??
	7.4 Proof of Theorem ??
	7.5 Further experimental details

