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ABSTRACT
Evolutionary strategies (ES) and off-policy learning algorithms are

two major workhorses of Reinforcement learning (RL): ES adopt

a simple blackbox approach to optimization but it can be slightly

more sample inefficient; off-policy learning is by design more sam-

ple efficient but the updates can be unstable. Motivated by their

trade-offs, we propose CEM-ACER, a combination of Cross-entropy

method, a standard ES algorithm, and Actor-critic with experience

replay (ACER), an off-policy actor-critic algorithm. Our proposal

relies on a key insight: off-policy algorithms provide a natural mech-

anism to efficiently evolve parameter populations as part of an ES

algorithm. Across a wide range of benchmark control tasks, we

show that CEM-ACER balances the strengths of CEM and ACER,

leading to an algorithm that consistently outperforms its individual

building blocks, as well as other competitive baseline algorithms.

KEYWORDS
Reinforcement Learning, Evolutionary Strategies, Off-policy Learn-

ing

1 INTRODUCTION
Reinforcement learning (RL) has proved to be a powerful paradigm

for general sequential decision making, through its successful ap-

plications to numerous simulated and real life domains [20, 24, 33].

Conventional knowledge tends to perceive near on-policy and off-

policy algorithms as two complementary approaches for solving

challenging RL problems: near on-policy methods [23, 31, 32] con-

struct parameter updates based on trajectories sampled under the

current policy iterate. This usually leads to more stable updates at

the cost of lower sample efficiency, because the samples are dis-

carded immediately after the on-policy updates; on the other hand,

off-policy methods [21, 41] construct updates based on samples

generated by arbitrary behavior policies, e.g. past policies. This

allows for extensive sample re-use and greatly improves sample

efficiency. However, the algorithm might suffer from unstable train-

ing due to the fundamental instability of off-policy learning [34, 40].

The above comparison presents a clear trade-off between sample

efficiency and learning stability, both critical for RL applications.

The trade-off motivates a careful combination of on-policy and

off-policy methods to obtain a more efficient middle ground.

We seek a principled combination of on-policy and off-policy

algorithms for RL. First, we identify the recently revived Evolution

strategies (ES) as a special variant of near on-policy methods [29].

ES construct updates based on local perturbations of the current
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policy parameter, which preserves the spirit of near on-policy meth-

ods. Though ES methods typically discard most of the structure

about the underlying problem (e.g. the Markov decision process

(MDP) assumption) compared to Policy gradients (PG) based algo-

rithms [23, 31, 32, 35], in practice their performance is competitive

to state-of-the-art PG algorithms [22, 29]. Furthermore, many ES

methods allow for more flexible updates other than gradient de-

scents (as discussed in Section 3), which potentially entails more

efficient combination with off-policy methods.

Main idea. We propose CEM-ACER, a combination of Cross-

entropy method (CEM) [5], and Actor-critic with experience re-

play (ACER) [41]. Our proposal relies on a key insight: off-policy

methods provide a natural and principled mechanism to evolve the

sampled policy parameters generated by CEM. Off-policy updates

allow the policy parameters to aggressively jump forward in the

parameter space without requiring additional samples from the

environment. Meanwhile, the evolutionary mechanism of CEM

automatically eliminates solutions which suffer from the instability

of off-policy updates, in order to safeguard the performance of the

final policy. As a result, the aggregated algorithm achieves both the

sample efficiency of off-policy algorithms and the stability of ES

algorithms.

Our paper proceeds as follows. In Section 2 and Section 3, we

introduce related work, along with background on CEM and ACER.

In Section 4, we expand on the idea of CEM-ACER: we provide both

intuitive arguments as to why CEM-ACER works, as well as some

theoretical guarantees. In Section 5, we show with comprehen-

sive experiments that CEM-ACER outperforms baseline algorithms

across a wide range of benchmark tasks. This corroborates that our

proposed technique combines the strength of its building blocks

while offsetting their drawbacks.

2 RELATEDWORK.
Combining on-policy and off-policy updates. There are prior

attempts at combining on-policy updates with off-policy infor-

mation, e.g. through memory [28], imitation learning [26] and

exploiting the connection between on-policy PG and Q-learning

[25, 30]. To directly combine gradient-based updates, Gruslys et al.

[12], Wang et al. [41] derive a general form of PG estimator which

interpolates between on-policy and off-policy gradient estimators.

This unified estimator achieves a principled trade-off between bias

and variance. Gu et al. [13] also derives an interpolated estimator

specialized to continuous control. Complementary to the aforemen-

tioned work, we study how to incorporate off-policy information

through off-policy gradient updates into the evolutionary step of

ES methods.

Combining ES and Off-policy updates. Though in spirit sim-

ilar to near on-policy PG based algorithms, ES are not typically



categorized as on-policy algorithms due to their strong connections

to blackbox optimization. The idea of combining ES with off-policy

updates is not new: Khadka and Tumer [17] apply off-policy Q-

learning [21] to speed up genetic algorithms [6]; Pourchot and

Sigaud [27] alternate the updates of off-policy Q-learning [11] with

CEM; more recently, Khadka et al. [16] improve upon [17] with

diversified exploration and better resource allocation. ES have also

been applied to entail better exploration, e.g. to generate diverse

off-policy samples for a concurrent off-policy learner [4]. Comple-

mentary to prior work, we combine CEM with off-policy actor-

critic updates. Compared to continuous Q-learning [16, 17, 27], our

method provides a more direct guarantee on monotonic improve-

ment and directly handles both discrete/continuous action domains.

We expand on the details in Section 4.

3 BACKGROUND
RL is formulated under the standard framework of MDP. At each

time step 𝑡 ≥ 0, an agent is in a state 𝑠𝑡 ∈ S. When an action

𝑎𝑡 ∈ A is taken, the agent receives an instant reward 𝑟𝑡 ∈ R and

transitions to a next state 𝑠𝑡+1 ∼ 𝑝 (·|𝑠𝑡 , 𝑎𝑡 ). Define a policy 𝜋 as

a conditional distribution given state 𝑠𝑡 over actions 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ).
Given a discount factor 𝛾 ∈ (0, 1], the expected cumulative rewards

under policy 𝜋 is given by

𝐽 (𝜋) = E𝜋 [
∑
𝑡 ≥0

𝛾𝑡𝑟𝑡 ] . (1)

The objective of RL is to search for the optimal policy𝜋∗ = arg max 𝐽 (𝜋).
For convenience, we introduce notations for value function 𝑉 𝜋 (𝑠),
action value function 𝑄𝜋 (𝑠, 𝑎) and advantage function 𝐴𝜋 (𝑠, 𝑎) =
𝑄𝜋 (𝑠, 𝑎) −𝑉 𝜋 (𝑠) under policy 𝜋 . To tractably optimize 𝜋 , it is con-

ventional to parameterize the policy 𝜋\ with parameter \ . We aim

to iteratively update \ to improve 𝐽 (𝜋\ ). The mainstream policy-

based model-free updates are generally categorized into either ES

or PG based algorithms, which we introduce below.

3.1 Evolutionary Strategies
ES are a class of zeroth-order optimization algorithms for general

purpose blackbox optimization, where we search for a solution 𝑥 to

maximize the blackbox function 𝑓 (𝑥). When applying ES methods

to RL, we flatten 𝐽 (𝜋\ ) into such a blackbox problem where the

solutions are policy parameters 𝑥 ≡ \ and blackbox functions

are the RL returns 𝑓 (𝑥) ≡ 𝐽 (𝜋\ ). In its most general form, ES

maintain a distribution over solutions and iteratively update the

distribution parameters. In general, different ES methods differ in

how to maintain the distribution and how to update the distribution

parameters [5, 15, 29]. Here we focus on CEM [5].

The CEM maintains a Gaussian distribution over solutions 𝑥 ∼
N(`, Σ) with parameter (`, Σ). At each iteration 𝑡 , 𝐾 solutions are

sampled from the current distribution 𝑥𝑖 ∼ N(`𝑡 , Σ𝑡 ), 1 ≤ 𝑖 ≤ 𝐾 .
The fitness of each solution 𝑥𝑖 is calculated 𝑓𝑖 based on the function

evaluation (e.g. for maximization, 𝑓𝑖 = 𝑓 (𝑥𝑖 )). The top 𝐾𝑒 elite

solutions {𝑥∗
𝑖
}𝐾𝑒

𝑖=1
are used for updating the distribution parameters

`𝑡+1 =

𝐾𝑒∑
𝑖=1

_𝑖𝑥
∗
𝑖 , Σ𝑡+1 =

𝐾𝑒∑
𝑖=1

_𝑖 (𝑥∗𝑖 − `𝑡 ) (𝑥
∗
𝑖 − `𝑡 )

𝑇 + 𝜖I, (2)

where the weights can be set as _𝑖 = 1/𝐾𝑒 to assign equal im-

portance to the top 𝐾𝑒 solutions. CEM updates (Eqn (2)) can be

viewed as re-weighing samples and fitting a new Gaussian to the

re-weighted samples (by assigning zero weights to the bottom

𝐾 − 𝐾𝑒 samples and _𝑖 weights to top 𝐾𝑒 samples). The mean up-

dates (Eqn (2)) will shift the distribution center towards a more

promising region of the optimization landscape, while the covari-

ance matrix aligns the sampling direction. The diagonal matrix 𝜖I
with small 𝜖 > 0 properly conditions the full covariance matrix

while maintaining a miminal exploration in all directions to pre-

vent premature convergence to local optima. At termination, the

algorithm returns the mean parameter ` as the final solution.

3.2 Policy Gradient
For gradient based optimization of the RL objective (Eqn (1)), we

aim to construct gradient estimators 𝑔\ ≈ ∇\ 𝐽 (𝜋\ ) and iteratively

update the policy \ ← \ +𝛼𝑔\ with some learning rate 𝛼 > 0. Here

the estimators 𝑔\ are called policy gradient estimators. The vanilla

policy gradient takes the following form [35]

∇\ 𝐽 (𝜋\ ) = E𝑠∼𝜌𝜋\ ,𝑎∼𝜋\ ( · |𝑠) [𝑄
𝜋\ (𝑠, 𝑎)∇\ log𝜋\ (𝑎 |𝑠)], (3)

where 𝜌𝜋\ is the state visitation distribution induced under 𝜋\ . Be-

cause the expectations are over the current policy 𝜋\ , the unbiased

sample estimate of Eqn. (3) is called the on-policy gradient estima-

tor. Due to the on-policy nature, a strict implementation of Eqn. (3)

would discard all the samples after performing only one gradient

update. This is not efficient in practice. Below we introduce an

off-policy gradient estimator which allows for re-using off-policy

samples.

3.3 Actor-Critic with Experience Replay
ACER [41] propose an off-policy estimator for the policy gradient

(Eqn (3)). Assume a behavior policy ` (·|𝑠) that generates all samples,

and let 𝜋 be the target policy. The off-policy gradient estimator

takes the following form

𝑔off
\

= E𝑠∼𝜌` ,𝑎∼` ( · |𝑠) [𝜌𝑄𝜋\ (𝑠, 𝑎)∇\ log𝜋\ (𝑎 |𝑠)]
= E𝑠∼𝜌`

[
E𝑎∼` ( · |𝑠) [𝜌 (𝑠, 𝑎)𝑄𝜋\ (𝑠, 𝑎)∇\ log𝜋\ (𝑎 |𝑠)]

+ E𝑎∼𝜋 ( · |𝑠) [𝜌+ (𝑠, 𝑎)𝑄𝜋\ (𝑠, 𝑎)∇\ log𝜋\ (𝑎 |𝑠)]
]
, (4)

where 𝜌 (𝑠, 𝑎) = min{𝑐, 𝜋\ (𝑠, 𝑎)/` (𝑎 |𝑠)} is the clipped likelihood

ratio between policies for some constant 𝑐 > 0. And 𝜌+ (𝑠, 𝑎) =
[1 − 𝑐/𝜌 (𝑠, 𝑎)]+ where [𝑥]+ is the positive part of 𝑥 . Note that the
off-policy gradient (Eqn (4)) differs from the on-policy gradient

(Eqn (3)) by the state distribution 𝑠 ∼ 𝜌` ≠ 𝜌𝜋\ . Degris et al.

[7] argue using Eqn. (4) as an alternative to Eqn. (3) is justified

because the gradient update preserves the globally optimal solution

under tabular parameterizations of the policy. The first line of

(Eqn (4)) shows that the mismatch between policies 𝜋\ (·|𝑠) and
` (·|𝑠) are adjusted by the importance sampling ratio 𝜌 (𝑠, 𝑎). The
second line of (Eqn (4)) can be interpreted as a more carefully

designed importance sampling scheme, where the first term controls

the variance by clipping 𝜌 (𝑠, 𝑎) to 𝜌 (𝑠, 𝑎); the clipping introduces
bias, and the second term corrects for the bias.

In practical implementations, the algorithm parameterizes an

action value function 𝑄𝜙 (𝑠, 𝑎) and a value function 𝑉𝜓 (𝑠). The



action value function in the first term of (Eqn (4)) is replaced by a

recursive off-policy estimate 𝑄ret (𝑠, 𝑎) using retrace [41]

𝑄ret (𝑠, 𝑎) ← 𝑟 + 𝛾𝜌 (𝑠 ′, 𝑎′) [𝑄ret (𝑠 ′, 𝑎′) −𝑄𝜙 (𝑠 ′, 𝑎′)] +𝑉𝜓 (𝑠 ′) . (5)

The action value function estimate in the second term of (Eqn (4)) is

replaced by the critic 𝑄𝜙 (𝑠, 𝑎) ≈ 𝑄𝜋\ (𝑠, 𝑎). This produces the final
ACER policy gradient estimator

𝑔acer
\

= E𝑠∼𝜌`
[
E𝑎∼` ( · |𝑠) [𝜌 (𝑠, 𝑎)𝑄ret (𝑠, 𝑎)∇\ log𝜋\ (𝑎 |𝑠)]

+ E𝑎∼𝜋 ( · |𝑠) [𝜌+ (𝑠, 𝑎)𝑄𝜙 (𝑠, 𝑎)∇\ log𝜋\ (𝑎 |𝑠)]
]
. (6)

Both critics are trained to approximate the on-policy action value

function 𝑄𝜙 (𝑠, 𝑎) ≈ 𝑄𝜋\ and value function 𝑉𝜓 (𝑠) ≈ 𝑉 𝜋\ (𝑠). The
algorithm also maintains a replay buffer which stores the historical

transitions of the policy 𝐷 = {{𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠 ′𝑖 }}. As a result, the be-

havior policy ` (·|𝑠) and its visitation distribution 𝜌` are implicitly

defined by sampling data from the replay buffer.

4 GUIDING ES WITH OFF-POLICY
ACTOR-CRITIC

4.1 Motivations
As discussed before, near on-policy algorithms such as ES and

off-policy algorithms have a clear trade-off between sample effi-

ciency and stability. To get the best of both worlds, we make the

following interpretation: off-policy algorithms serve as a principled

mechanism for evolving the sampled policy parameters in ES. The

evolved parameters can then be aggregated into a new population

distribution using a conventional ES update.

4.2 Algorithm
We first introduce an algorithm called CEM-ACER. In later sections,

we will discuss the intuitions behind the algorithm. The algorithm

maintains a Gaussian distribution over policy parameters N(`, Σ)
as well as a replay buffer D to store all historical transitions. At

each iteration, first sample 𝐾 sampled policy parameters from the

current distribution \𝑖 ∼ N(`𝑡 , Σ𝑡 ), 1 ≤ 𝑖 ≤ 𝐾 . Then 𝐾
off
≤ 𝐾

parameters are updated using an ACER subroutine (Algorithm 2)
with gradients constructed from a replay bufferD. For convenience,

we assume to carry out ACER updates on \𝑖 , 1 ≤ 𝑖 ≤ 𝐾
off
, and

the resulting updated parameters are denoted \ ′
𝑖
, 1 ≤ 𝑖 ≤ 𝐾

off
.

Finally, we pool all the updated parameters \ ′
𝑖
, 1 ≤ 𝑖 ≤ 𝐾

off
and

originally sampled parameters \𝑖 , 𝐾off+1 ≤ 𝑖 ≤ 𝐾 together, evaluate

their fitness, and perform a CEM update according to (Eqn (2)):

`𝑡 → `𝑡+1, Σ𝑡 → Σ𝑡+1. The algorithmic proecedure is summarized

in Algorithm 1.
When evaluating the fitness of each policy paraneter \𝑖 , we roll

out the corresponding policy 𝜋\𝑖 to generate a trajectory of length

𝑇 , which produces 𝑇 transition tuples {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠 ′𝑡+1}
𝑇−1

𝑡=0
. These

transition tuples are stored into the replay buffer D. The Monte-

Carlo estimate of return 𝑅𝑖 =
∑𝑇−1

𝑡=0
𝑟𝑡 is used as the fitness function

of parameter \𝑖 .

Figure 1: Simplified illustration of the algorithmic procedure of
CEM-ACER. Dots represent parameters (e.g. weights of policy net-
works). The red dots represent parameters at iteration 𝑡 . The blue
arrows show how each parameter gets updated via off-policy sub-
routines (e.g. ACER), resulting in new parameters as blue dots at
iteration 𝑡 + 1. The population of red dots form the Gaussian dis-
tribution N(`𝑡 , Σ𝑡 ) ; the orange contour shows the Gaussian distri-
bution at iteration 𝑡 + 1, by performing pure CEM updates on the
red dots (i.e. fitting new a Gaussian using high-performing parame-
ters). The blue contour shows the Gaussian distribution at iteration
𝑡+1, fittedwith parameters obtained via off-policy updates. The plot
graphically shows that CEM-ACER allows for more aggressive up-
dates (`𝑡 , Σ𝑡 ) → (`𝑡+1, Σ𝑡+1) than CEM, which potentially leads to
more efficient learning, as corroborated by the experiment results.

Algorithm 1 CEM-ACER

1: Input: initial distribution parameter `0, Σ0.

2: Initialize iteration counter 𝑡 = 0 and replay buffer D = {}
3: while forever do
4: Sample 𝐾 sampled policy parameters \𝑖 ∼ N(`𝑡 , Σ𝑡 ).
5: Perform off-policy actor-critic updates on \𝑖 , 1 ≤ 𝑖 ≤ 𝐾off

and return \ ′
𝑖
= ACER(\𝑖 ,D).

6: Evaluate the fitness of all parameters \ ′
𝑖
, 1 ≤ 𝑖 ≤ 𝐾

off
and

\𝑖 , 𝐾off + 1 ≤ 𝑖 ≤ 𝐾 each using a single rollout 𝑓𝑖 = 𝑅𝑖 . The

rollout trajectories are stored in D.

7: Use CEM to update `𝑡+1, Σ𝑡+1 according to (Eqn (2)).

8: 𝑡 ← 𝑡 + 1.

9: end while

Webriefly introduce the details of theACER subroutine (Algorithm
2). ACER starts with any parameter \ and a replay buffer D. First

draw sample tuples from the buffer (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠 ′𝑖 ) ∼ D, then con-

struct off-policy gradient 𝑔acer
\

based on (Eqn (6)). The parameter is

updated using 𝑇
off

gradient steps \𝑖 ← \𝑖 + 𝛼𝑔acer\
. In the end, the

subroutine returns the final \ ′
𝑖
.

4.3 How does CEM-ACER achieve sample
efficiency and learning stability?

We pictorially contrast CEM-ACER with the conventional CEM in

Figure 1. The red circle shows the contour of the Gaussian distribu-

tion over policy parameters N(`𝑡 , Σ𝑡 ) at iteration 𝑡 while the red
dots show its samples. We assume that the objective landscape is

such that samples at the upper right corner have larger fitness. The



orange contour shows the resulting Gaussian distribution updated

via a vanilla CEM. The CEM-ACER randomly selects several sam-

pled policy parameters and update them with off-policy gradients,

which transport the red samples into blue samples (the updates are

illustrated as blue arrows). As a result of the instability of off-policy

updates, it is possible that certain sampled policy parameters have

even worse fitness after the update (e.g. the blue sample on the

left). The CEM step of CEM-ACER will aggregate only the high-

performing sampled policy parameters from the off-policy updates

(the two blue samples on the right), which produces N(`𝑡+1, Σ𝑡+1)
shown as the blue contour. This offers a natural to partially address

the instability issues induced by off-policy training [34, 40]. In ad-

dition, we see that the off-policy updates entail the sampled policy

parameters to jump over large distances in the parameter space,

allowing for more aggressive updates per iteration. On the contrary,

CEM only carries out very local update (the orange contour is very

close to the red contour, while the blue contour is far away) hence

is much less sample efficient.

Algorithm 2 Off-policy Subroutine: ACER

1: Input: parameter \ , replay buffer D
2: Initialize iteration counter 𝑡 = 0

3: while 𝑡 ≤ 𝑇
off

do
4: Sample tuples (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠 ′𝑖 ) from the replay buffer D and

construct off-policy actor-critic gradient 𝑔acer
\

as in (Eqn (6)).

5: Update with gradient \ ← \ + 𝛼𝑔acer
\

.

6: 𝑡 ← 𝑡 + 1.

7: end while
8: Return: \

Approximate Monotonic Improvement. The CEM-ACER al-

gorithm alternates between CEM updates and ACER off-policy

gradient updates. Recall that `𝑡 is the mean policy parameter of

the population distribution at iteration 𝑡 . We compare the perfor-

mance of two consecutive policy iterates 𝐽 (𝜋`𝑡+1 ) and 𝐽 (𝜋`𝑡 ). The
following theorem formalizes the intuition from the last section,

and derives the improvement for the policy iterate (see Appendix

B for proof)

Theorem 4.1. Consider a version of the algorithm with a contin-

uum of sampled particles, i.e. 𝐾 →∞. Let [off =
𝐾off
𝐾
∈ (0, 1] be the

proportion of particles being updated via the off-policy subroutine.
Assume that the off-policy subroutine provides improvements such
that 𝐽 (𝜋\ ′

𝑖
) ≥ 𝐽 (𝜋\𝑖 ) + 𝛿 for some improvement lower bound 𝛿 . For

simplicity, we assume CEM to always fit Gaussian N(`, 𝜎2I) with a
fixed standard deviation 𝜎 , and we assume that the distribution over
the top 𝐾e

𝐾
percent of the elite samples could be perfectly fitted by the

distriution N(`, 𝜎2I) by finding a proper `. The following holds

𝐽 (𝜋`𝑡+1 ) ≥ 𝐽 (𝜋`𝑡 ) + [off𝛿 − 𝜎2𝑀 + 𝑜 (𝜎2), (7)

for some 𝑀𝐷𝑃 dependent constant 𝑀 > 0. Here 𝑜 (𝑥) stands for
functions of 𝑥 such that lim𝑥→0

𝑜 (𝑥)
𝑥 = 0.

The above theorem assumes that the off-policy subroutine im-

proves the individual policy parameter 𝐽 (𝜋\ ′
𝑖
) ≥ 𝐽 (𝜋\𝑖 ) + 𝛿 with

guarantee 𝛿 . Under some restrictive assumptions on the degree of

off-policyness of the data, one could derive more explicit forms of

𝛿 following techniques in [31] and more recently [38]. Contrast-

ing Eqn (7) with pure CEM where 𝛿 = 0: though the theoretical

derivations of 𝛿 tend to be conservative, leading to 𝛿 < 0 [31, 38],

in practice the improvements are generally non-negative 𝛿 ≥ 0.

As a result, CEM-ACER entails enlarged improvements compared

to pure ES approaches, with the help of off-policy methods. It is

worth noting that other off-policy updates, e.g. Q-learning which

minimizes surrogate loss functions such as Bellman errors. This

does not directly translate into an improvement in the RL return

objective. On the other hand, off-policy actor-critic approximately

optimizes 𝐽 (𝜋\ ) with direct gradient descents and leads to a direct

improvement.

Note that a major limitation of the above theorem is that we also

assume the solution population (after being updated by off-policy

algorithms) can be fit with a Gaussian distribution N(`, 𝜎2I). This
might not be true when the off-policy updates take update parame-

ters to be far away from each other. The resulting population is not

uni-modal and cannot be perfectly fit be a Gaussian distribution.

Next, we validate the empirical performance of CEM-ACER with

extensive experiments.

5 EXPERIMENTS
We aim to address the following questions in the experiments:

(1) Does CEM-ACER provide performance gains over baseline RL

algorithms on benchmark control tasks? Specifically, does CEM-

ACER improve upon its building blocks CEM and ACER? (2) How
sensitive are CEM-ACER to certain important hyper-parameters

compared to CEM and ACER?

To address (1), we evaluate CEM-ACER over three sets of bench-

mark tasks: control tasks with discrete/continuous action space,

and with partial observability. To analyze and validate performance

gains of CEM-ACER, we compare with the building blocks: CEM

and ACER with only off-policy updates. We also compare with

ACER with both on/off-policy updates and A2C [23] to assess the

importance of on-policy updates. To address (2) we carry out abla-

tion study on the hyper-parameters of CEM-ACER.

Implementation Details. Baseline algorithms are all imple-

mented with OpenAI baselines [8] and Tensorflow [1]. The bench-

mark tasks are simulated in OpenAI gym [3], DeepMind control

suites [39] or Roboschool [19]. These tasks include robotics locomo-

tion, simple manipulation and simulated video games as illustrated

in Figure 6. We directly implement CEM-ACER on top of the code

base of ACER and CEM to ensure meaningful comparison. All gra-

dient based optimizations are carried out with Adam optimizer [18].

In benchmark evaluations below, we set 𝐾 = 10 sampled policy

parameters per iteration for CEM-ACER and CEM, and 𝐾
off

= 5

for CEM-ACER. The elite parameter is set to be 𝐾e = 𝐾/2 = 5.

Additional hyper-parameters are specified below and in Appendix

A.

5.1 Discrete Action Space
Setup. Though many RL tasks of robotic interest have continu-

ous action space. We convert continuous action spaces into discrete

ones by discretizing. To be concrete, given a continuous action



space such as A = [−1, 1]𝑚 , we discretize each dimension into

𝐾 evenly spaced atomic actions. This results in an action space

with 𝐾𝑚 joint actions. Despite the explosion in joint action space,

prior works have found such simple discretization scheme useful

in achieving stable learning of locomotion and manipulation tasks

[2, 36]. The policy 𝜋\ (𝑎 |𝑠) is parametrized as a categorical distribu-

tion and we set𝐾 = 5. CEM-ACER and ACER are implemented with

the best learning rate ∈ {7 · 10
−3, 7 · 10

−4} and A2C is implemented

with the best learning rate ∈ {3 · 10
−4, 3 · 10

−5}.

Results. In Figure 2, we show the learning curves of baseline

algorithms across benchmark tasks, where each colored curve cor-

responds to a different baseline. We make several observations: (1)
CEM consistently performs poorly. We speculate this is because the

underlying policy 𝜋\ (𝑎 |𝑠) is stochastic, whose action level noise

confounds the parameter level noise of ES methods. This can be

shown to lead to higher variance in the parameter updates and

worse learning performance [37]; (2) ACER with on/off-policy up-

dates are more stable than ACER with only off-policy updates. We

speculate that off-policy gradients accumulate bias in the parameter

updates, which get periodically mediated by on-policy gradients.

However, when on-policy gradients are not available this generally

leads to performance bottleneck. This is compatible with results

from [9, 10], where they show (off-policy) Q-learning is more stable

when on-policy samples are available; (3) Most importantly, CEM-

ACER significantly outperforms its building components ACER and

CEM across almost all tasks. This implies that CEM-ACER com-

bines the benefits of these two algorithms while offsetting their

respective drawbacks. Specifically, CEM-ACER makes much more

rapid progress in the parameter space than CEM thanks to inter-

wined off-policy updates. On the other hand, unlike ACER with

on/off-policy updates, CEM-ACER only carries out off-policy up-

dates. The instability of off-policy updates are alleviated through

the proper weighting (Eqn (2)) in the CEM updates - indeed, if a

particle solution is stuck at bad performance, CEM updates will

eliminate such solutions by assigning them zero weights.

5.2 Continuous Action Space
Setup. We also consider the case where the policy directly out-

puts continuous actions for the control tasks. Here, the policy

𝜋\ (𝑎 |𝑠) = N(`\ (𝑠), 𝜎2) is parameterized as a Gaussian distribu-

tion with mean `\ (𝑠) and state-independent variance 𝜎2
. We note

that the ACER implementation details differ from the discrete case:

indeed, Wang et al. [41] introduce multiple additional techniques to

stabilize the training of the continuous policy and require further

hyper-parameter optimization. We review such techniques in the

Appendix. CEM-ACER and ACER are implemented with the best

learning rate ∈ 7 · {10
−3, 10

−4, 10
−5, 10

−6} and A2C is implemented

with the best learning rate ∈ {3 · 10
−4, 3 · 10

−5}.

Results. We show the learning curves in Figure 3 across mul-

tiple continuous control tasks. We make several observations: (1)
ACER is not quite stable in continuous contexts. Importantly, we

note that despite our efforts to stabilize ACER according to the

recipe in [41], ACER easily becomes unstable under large learning

rates - yet with small learning rates it learns extremely slowly; (2)

Despite the instability of the underlying ACER subroutine, CEM-

ACER is more robust during learning. In this case, CEM-ACER

leverages the stabilizing effects of CEM (i.e. automatically elimi-

nating worse-performing parameters) to overcome the unstable

learning of ACER. In practice, we find that CEM-ACER performs

better with a larger learning rate ≈ 10
−3

in contrast to ACER, where

the working learning rate ≈ 10
−5
.

5.3 Partially Observable Tasks
Setup. We modify the original full-observable locomotion tasks

[3] into partially observable tasks. The state space of the original

tasks contains both generalized position and velocities of robot

joints. To make the system partially observable, we remove the

generalized velocities from the observation space. To succeed at the

task, the agent needs to infer the full state e.g. velocities through a

sequence of observations. The policy is parameterized as a LSTM

policy 𝜋\ (𝑎 |𝑠, ℎ) which takes in the current observation 𝑠 and a

hidden state ℎ to compute the distribution over actions [8, 14]. The

hidden state ℎ is also updated based on the new observation 𝑠 via

the LSTM cell. Here the action space the same as Section 5.1. We

leave details to the Appendix.

Results. In Figure 4, we show the learning curves of baseline

algorithms across partially observable benchmark tasks. We make

the following observations from the results: (1) Comparing the cor-

responding fully-observable tasks in Figure 2, algorithms in general

learn much more slowly on the partially observable tasks (e.g. com-

pare Figure 2(c) and Figure 4(c). This shows that partially observable

tasks are indeed much more challenging than their full observable

counterparts - in order to learn, the agent needs to implicitly infer

full state information through the recurrent policy. This usually

takes place very slowly due to the long range dependencies in the re-

current network [14]; (2)Despite slower learning rates, CEM-ACER

significantly outperforms the other benchmark algorithms, particu-

larly the individual ACER and CEM. Though CEM by itself does

not perform well on partially observable tasks, when augmented

with off-policy updates in ACER, the search procedure takes place

much more quickly as observed in Figure 4.

5.4 Ablation Study
We carry out ablation study on how various hyper-parameters

impact the learning performance. In particular, we study the particle

parameter population size 𝐾 and number of off-policy gradient

updates per particle in each iteration 𝑇
off
. We carry out ablation

studies by evaluating different hyper-parameter settings on two

tasks: Inverted-Pendulum and Double-Pendulum, with a similar

setup in Section 5.1.

Particle parameter population size. To assess the effect of the
population size𝐾 , we compare CEM-ACER (solid lines) with vanilla

CEM (dashed lines). In general, the dependence of CEM-ACER on

𝐾 is task-dependent: For Double-Pendulum, the final performance

peaks at a population size of 𝐾 ≈ 10. We speculate that with 𝐾 too

small, the evolution does not entail sufficient exploration, which

causes the algorithm to get stuck at local optima; on the other

hand, having very large 𝐾 tends to consume many more time steps

per iteration, leading to worse sample efficiency. For CEM, in our



(a) Reacher (b) InvertedPendulum (c) DoublePendulum (d) PendulumSwingup

(e) CartPoleBalance (f) CartPoleSwingup (g) RoboPendulum (h) LunarLander

Figure 2: Learning curves on benchmark tasks with discrete action space. Each curve corresponds to a different algorithm (blue: CEM-ACER;
purple: ACER with both on/off-policy updates; orange: ACER with both off-policy updates; green: CEM; yellow: A2C). Each curve is averaged
cross five random seeds. All tasks are trained for 1 · 10

6 ∼ 2 · 10
6 time steps.

(a) Swimmer (b) CartPole (c) InvertedPendulum (d) Hopper

Figure 3: Learning curves on continuous control tasks. Each curve corresponds to a different algorithm (blue: CEM-ACER; purple: ACER
with both on/off-policy updates; orange: ACER with both off-policy updates). Each curve is averaged cross five random seeds. All tasks are
trained for 1 · 10

6 ∼ 2 · 10
6 time steps.

experiments this does not make too much difference because the

algorithm does not learn well.

Number of off-policy gradient updates. For off-policy algo-

rithms, the number of off-policy updates reflect the intensity of

sample reuse. To evaluate the impact of the number of off-policy

updates per iteration 𝑇
off
, we compare against ACER with only

off-policy updates. We see from Figure (5)(b) that for ACER, the

dependence on 𝑇
off

is not monotonic: in particular, for Inverted-

Pendulum, the best performance is achieved by setting 𝑇
off
≈ 10.

The intuition is that small𝑇
off

leads to insufficient sample reuse, yet

large 𝑇
off

magnifies the instability of off-policy learning. However,

for CEM-ACER, increasing 𝑇
off

does not impose such significant

instability penalty. We speculate that the evolutionary mechanism

guards against unstable off-policy updates and guarantees that the

final performance is more robust.

6 CONCLUSION
We have proposed CEM-ACER, a combination of CEM with off-

policy actor-critic algorithm ACER. As shown through extensive

experiments, CEM-ACER retains both the sample efficiency of off-

policy updates in ACER and training stability of on-policy updates

as in CEM. Our interpretation of off-policy algorithms as natural

mechanisms for evolving sampled policy parameters in ES methods



(a) Swimmer (b) CartPole (c) InvertedPendulum (d) DoublePendulum

Figure 4: Learning curves on partially observable benchmark tasks. Each curve corresponds to a different algorithm (blue: CEM-ACER; purple:
ACER with both on/off-policy updates; orange: ACER with both off-policy updates). Each curve is averaged cross five random seeds. All tasks
are trained for 1 · 10

6 ∼ 2 · 10
6 time steps.

(a) Population Size (b) Number of Updates

Figure 5: Ablation study on hyper-parameters 𝐾 and𝑇off.

can be applied to other off-policy settings. We leave as future work

its extension to e.g. model-based RL.

A FURTHER EXPERIMENT DETAILS
We provide additional experiment details below. The details consist

of the algorithm setup, where we introduce implementation de-

tails for all baseline algorithms, and task setup, where we review
and complete the details for benchmark tasks and policy parame-

terization.

A.1 Algorithm Setup
ACER.. ACER implements a generic gradient estimator as in

(Eqn (6)). The clipping constant 𝑐 = 10 for discrete and 𝑐 = 5

for continuous action space. Both the policy 𝜋\ and action value

function𝑄𝜙 (𝑠, 𝑎) are fully-connected networks with 2 hidden layers

with 64 units and tanh non-linear activations. The discount factor

for retrace is 𝛾 = 0.99. The value function 𝑉𝜓 (𝑠) is not explicitly
parametrized for discrete action space, because we can approximate

𝑉𝜓 (𝑠) =
∑
𝑎 𝜋\ (𝑎 |𝑠)𝑄𝜙 (𝑠, 𝑎). For continuous action space, the value

function has 2 hidden layers with 64 units and tanh non-linear

activation functions.

The critic functions 𝑄𝜙 (𝑠, 𝑎) are trained to minimize the square

errors against the retrace targets. Wang et al. [41] show that this

speeds up the convergence of trained critics.

For continuous action space, there are a few implementation

details that deviate from the discrete case. The action value function

is parameterized as a Stochastic Dueling Network (SDN) where

we only parameterize 𝑉𝜙 (𝑠) and 𝐴𝜙 (𝑠, 𝑎) as neural networks with
similar architecture as above, and produce the action value function

as below

𝑄𝜙 (𝑠, 𝑎) = 𝑉𝜙 (𝑠) +𝐴𝜙 (𝑠, 𝑎) −
1

𝑛

𝑛∑
𝑖=1

𝐴𝜙 (𝑠, 𝑎′), 𝑎′ ∼ 𝜋\ (·|𝑠), (8)

where 𝑛 = 5. This parameterization decomposes the action value

function naturally into a value function 𝑉𝜙 (𝑠) and an advantage

function𝐴𝜙 (𝑠, 𝑎). In addition, in continuous case we also replace the
clipping ratio 𝜌 (𝑠, 𝑎) = min{𝑐, 𝜋\ (𝑎 |𝑠)

` (𝑎 |𝑠) } in (Eqn (6)) by 𝜌𝑑 (𝑠, 𝑎) =

min{𝑐, ( 𝜋\ (𝑎 |𝑠)
` (𝑎 |𝑠) )

1/𝑑 }where𝑑 is set to be the dimension of the action

space. This technique is used for smoothing the density ratio in

high dimensional action space.

In our benchmark comparison in Section 5.1 to Section 5.3, we

use 𝑇
off

= 4 off-policy updates per iteration. The full ACER (ACER

with on/off-policy updates in Section 5) also generate one single

on-policy gradient update from the collected samples to update

the parameter, in practice, this usually makes the learning more

stable. In each iteration, we collect 𝑁 = 320 time steps from the

environment and save into the buffer. These are default hyper-

parameters of the baseline code [8].

CEM.. In our implementation, CEM shares the same policy pa-

rameterization as ACER but just without all the critic functions.

CEM sets the elite size 𝐾e = 1

2
𝐾 and equal weights across all

elite samples. The covariance matrix has a damping parameter

𝜖 in (Eqn (2)) to maintain the property condition of the matrix.

This damping parameter 𝜖 starts with 10
−3

and exponentially an-

neal to 10
−5
. We borrow the open source implementation from

https://github.com/apourchot/CEM-RL.

CEM-ACER.. In our implementation, CEM-ACER by construc-

tion shares all the parameterization and implementation techniques

as ACER and CEM. In particular, CEM-ACER maintains a distri-

bution over policy parameters \ ∈ N (`, Σ) for 𝜋\ (𝑎 |𝑠), while a

single parameter for the critic 𝑄𝜙 (𝑠, 𝑎),𝑉𝜓 (𝑠). Each time a particle

policy parameter \𝑖 ∼ N(`, Σ) gets trained using ACER, it gets

updated using gradients constructed from the common critic, while

the critic is also updated using gradients generated from the policy.

https://github.com/apourchot/CEM-RL


An obvious alternative is to also maintain a distribution over the

critic parameter 𝜙,𝜓 and aggregate the critic parameter in an ES

manner. However, in practice we find using a single critic parameter

works much more stably.

For benchmark evaluation from Section 5.1 to Section 5.3, we set

the population size 𝐾 = 10. In each iteration, we collect data from

all 𝐾 = 10 sampled policy parameters. Then 𝐾
off

= 1

2
𝐾 = 5 policy

parameters get updated using the ACER off-policy gradients. For

each of the particle policy parameter, we carry out ≈ 𝐾𝑇
off

updates.

This is to ensure that we have similar rate of sample reuse as the

original ACER.

A.2 Task Setup.
Most tasks are visually displayed in Figure 6. Please consult the

corresponding code base for detailed descriptions of these tasks.

Partially observable tasks. For tasks which are partially ob-

servable, i.e. tasks where the observations do not reflect the under-

lying true states of the control system, we resort to the recurrent

policy [14]. Both the policy 𝜋\ (𝑎 |𝑠) and critics 𝑄𝜙 (𝑠, 𝑎) are param-

eterized as LSTM networks, which maintain a hidden state ℎ per

time step. The hidden state ℎ is 256 dimensional and initialized to

zeros at the beginning of each episode during execution. At each

time step, the hidden state ℎ is updated based on the latest obser-

vation 𝑠 using the LSTM cell ℎ𝑡 = LSTM(ℎ𝑡−1, 𝑠𝑡 ). Conceptually,
the hidden state ℎ𝑡 summarizes past information and serves as a

sufficient statistics to compute the policy and action value function.

In practice, we sample a segment of trajectories from the replay

buffer and adopt truncated backprop through time as implemented

in [8].

B PROOF OF THEOREM 1
We start with characterizing the return objective 𝐽 (𝜋`𝑡 ). At it-
eration 𝑡 , we have a Gaussian distribution N(`𝑡 , 𝜎2I). Let 𝑀 =

max𝑥 |Tr(∇2

𝑥 𝐽 (𝑥)) | be an upper bound on the absolute values of

the trace of the Hessian matrix ∇2

𝑥 𝐽 (𝑥). Then

𝐽 (`𝑡 ) ≤ E𝑥∼N(`𝑡 ,𝜎2I) [𝐽 (𝑥)] + 𝜎2𝑀 + 𝑜 (𝜎2),

and similarly,

𝐽 (`𝑡 ) ≥ E𝑥∼N(`𝑡 ,𝜎2I) [𝐽 (𝑥)] − 𝜎2𝑀 + 𝑜 (𝜎2) .

Since we consider a continuum of sampled particles𝐾 →∞, and by
construction, [

off
of all particles get updated via off-policy learning,

yielding an improvement of 𝛿 . Formally, let \𝑖 , \
′
𝑖
be the updates

before and after the off-policy subroutine step, then for any \ ∼
N(`𝑡 , 𝜎2I), with probability [

off
, 𝐽 (𝜋\ ′

𝑖
) ≥ 𝐽 (𝜋\𝑖 ) +𝛿 and otherwise

𝐽 (𝜋\ ′
𝑖
) = 𝐽 (𝜋\𝑖 ). Because by assumption the top

𝐾𝑒

𝐾
percent of

the elite samples, which are used for fitting N(`𝑡+1, 𝜎2I) could be

perfectly fitted by a parametric distribution of the form N(`, 𝜎2I)

for some `, we have

𝐽 (𝜋`𝑡+1 ) ≥ E𝑥∼N(`𝑡+1,𝜎2I) [𝐽 (𝑥)] − 𝜎2𝑀 + 𝑜 (𝜎2)

≥ E\ ′ [𝐽 (\ ′)] − 𝜎2𝑀 + 𝑜 (𝜎2)
≥ E\ [𝐽 (\ )] + [off𝛿 − 𝜎2𝑀 + 𝑜 (𝜎2)
= E𝑥∼N(`𝑡 ,𝜎2I) [𝐽 (𝑥)] + [off𝛿 − 𝜎2𝑀 + 𝑜 (𝜎2)

≥ 𝐽 (𝜋`𝑡 ) + [off𝛿 − 2𝜎2𝑀 + 𝑜 (𝜎2).

The expectations E\ [·] and E\ ′ [·] denotes expectations over the
population distribution over the updated parameter \ ′ and initial

parameter \ respectively. In the first and last inequality, we invoked

the upper and lower bounds defined previously. In the second in-

equality, we invoked the assumption that the top
𝐾𝑒

𝐾
percent of the

elite samples of \ ′ follows the distribution ofN(`𝑡+1, 𝜎2I) and that
the selection principle induces the inequality. The third inequality

is a result of the monotonic improvement for the updated param-

eter \ → \ ′ with 𝐽 (𝜋\ ′) ≥ 𝐽 (𝜋\ ) + 𝛿 with probability [
off
. This

concludes the proof.
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