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Abstract

We introduce a new approach for comparing reinforcement learning policies, using
Wasserstein distances (WDs) in a newly defined latent behavioral space. We show
that by utilizing the dual formulation of the WD, we can learn score functions
over policy behaviors that can in turn be used to lead policy optimization towards
(or away from) (un)desired behaviors. Combined with smoothed WDs, the dual
formulation allows us to devise efficient algorithms that take stochastic gradient
descent steps through WD regularizers. We incorporate these regularizers into two
novel on-policy algorithms, Behavior-Guided Policy Gradient and Behavior-Guided
Evolution Strategies, which we demonstrate can outperform existing methods in a
variety of challenging environments. We also provide an open source demo*.

1 Introduction

One of the key challenges in reinforcement learning (RL) is to efficiently incorporate the behaviors of
learned policies into optimization algorithms [17, 21, 7]. The fundamental question we aim to shed
light on in this paper is:

What is the right measure of similarity between two policies acting on the same underlying MDP and
how can we devise algorithms to leverage this information for RL?

In simple terms, the main thesis motivating the methods we propose is that:

Two policies may perform similar actions at a local level but result in very different global behaviors.

We propose to define behaviors via so-called Behavioral Policy Embeddings (henceforth referred to
as Policy Embeddings), which can be both on policy and off policy.

On policy embeddings are achieved via what we call Behavioral Embeddings Maps (BEMs) -
functions mapping trajectories of a policy into a latent behavioral space representing trajectories in
a compact way. We define the policy embedding as the pushforward distributions over trajectory
embeddings as a result of applying a BEM to the policy’s trajectories. Importantly, two policies with
distinct distributions over trajectories may result in the same probabilistic embedding. Off policy

*Equal contribution.
*Available at https://github.com/behaviorguidedRL/BGRL. We emphasize this is the exact code from

our experiments, but a demo to build intuition and clarify our methods.
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embeddings in contrast correspond to state and policy evaluation pairs resulting of evaluating the
policy on states sampled from a probing state distribution that can be chosen independently from the
policy.

Both embedding mechanisms result in probabilistic Policy Embeddings, which allow us to identify
a policy with a distribution with support on an embedding space. Policy Embeddings provide us a
way to rigorously define dissimilarity between policies. We do this by equipping them with metrics
defined on the manifold of probability measures, namely a class of Wasserstein distances (WDs, [35]).
There are several reasons for choosing WDs:

• Flexibility. We can use any cost function between embeddings of trajectories, allowing the distance
between policy embeddings to arise organically from an interpretable distance between embedding
points.

• Non-injective BEMs. Different trajectories may be mapped to the same embedding point (for
example in the case of the last-state embedding). This precludes the use of likelihood-based
distances such as the KL divergence [16], which we discuss in Section 6.

• Behavioral Test Functions. Solving the dual formulation of the WD objective yields a pair of test
functions over the space of embeddings, used to score trajectories or state policy pairs (see: Sec.
5.2).

The Behavioral Test Functions, underpin all our algorithms, directing optimization towards desired
behaviors. To learn them, it suffices to define the embedding type and BEM (if required) and the
cost function between points in the resulting behavioral manifold. To mitigate the computational
burden of computing WDs, we rely on their entropy-regularized formulations. This allows us
to update the learned test functions in a computationally efficient manner via stochastic gradient
descent (SGD) on a Reproducing Kernel Hilbert Space (RKHS). We develop a novel method for
stochastic optimal transport based on random feature maps [26] to produce compact and memory-
efficient representations of learned behavioral test functions. Finally, having laid the groundwork for
comparing policies via behavior-driven trajectory or state-policy pairs scores, we address our core
question by introducing two new on-policy RL algorithms:

• Behavior Guided Policy Gradients (BGPG): We propose to replace the KL-based trust region
from [31] with a WD-based in the behavior space.

• Behavior Guided Evolution Strategies (BGES): BGES improves on Novelty Search [7] by
jointly optimizing for reward and novelty using the WD in the behavior space.

We also demonstrate a way to harness our methodology for imitation and repulsion learning (Section
5.2), showing the universality of the proposed techniques.

2 Motivating Behavior-Guided Reinforcement Learning

Throughout this paper we prompt the reader to think of a policy as a distribution over its behaviors,
induced by the policy’s (possibly stochastic) map from state to actions and the unknown environment
dynamics. We care about summarizing (or embedding) behaviors into succinct representations
that can be compared with each other (via a cost/metric). These comparisons arise naturally when
answering questions such as: Has a given trajectory achieved a certain level of reward? Has it visited
a certain part of the state space? We think of these summaries or embeddings as characterizing the
behavior of the trajectory or relevant state policy-pairs. We formalize these notions in Section 3.

We show that by identifying policies with the embedding distributions that result of applying the
embedding function (summary) to their trajectories, and combining this with the provided cost
metric, we can induce a topology over the space of policies given by the Wasserstein distance over
their embedding distributions. The methods we propose can be thought of as ways to leverage
this “behavior” geometry for a variety of downstream applications such as policy optimization and
imitation learning.

This topology emerges naturally from the sole definition of an embedding map (behavioral summary)
and a cost function. Crucially these choices occur in the semantic space of behaviors as opposed to
parameters or visitation frequencies*. One of the advantages of choosing a Wasserstein geometry is

*If we choose an appropriate embedding map our framework handles visitation frequencies as well.
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that non-surjective trajectory embedding maps are allowed. This is not possible with a KL induced
one (in non-surjective cases, computing the likelihood ratios in the KL definition is in general
intractable). In Sections 4 and 5 we show that in order to get a handle on this geometry, we can use the
dual formulation of the Wasserstein distance to learn functions (Behavioral Test Functions) that can
provide scores on trajectories which then can be added to the reward signal (in policy optimization)
or used as a reward (in Imitation Learning).

In summary, by defining an embedding map of trajectories into a behavior embedding space equipped
with a metric*, our framework allows us to learn “reward” signals (Behavioral Test Functions) that
can serve to steer policy search algorithms through the “behavior geometry” either in conjunction
with a task specific reward (policy optimization) or on their own (e.g. Imitation Learning). We
develop versions of on policy RL algorithms which we call Behavior Guided Policy Gradient (BGPG)
and Behavior Guided Evolution Strategies (BGES) that enhance their baseline versions by the use of
learned Behavioral Test Functions. Our experiments in Section 7 show this modification is useful.
We also provide a simple example for repulsion learning and Imitation Learning, where we only need
access to an expert’s embedding. Our framework also has obvious applications to safety, learning
policies that avoid undesirable behaviors.

A final important note is that in this work we only consider simple heuristics for the embeddings,
as used in the existing literature. For BGES, these embeddings are those typically used in Quality
Diversity algorithms [24], while for BGPG we reinterpret the action distribution currently used
in KL-based trust regions [32, 31]. We emphasize the focus of this paper is on introducing the
framework to score these behaviors to guide policy optimization.

3 Defining Behavior in Reinforcement Learning

A Markov Decision Process (MDP) is a tuple (S,A,P,R). Here S and A stand for the sets of
states and actions respectively, such that for s, s′ ∈ S and a ∈ A: P(s′|a, s) is the probability that
the system/agent transitions from s to s′ given action a and R(s′, a, s) is a reward obtained by an
agent transitioning from s to s′ via a. A policy πθ : S → A is a (possibly randomized) mapping
(parameterized by θ ∈ Rd) from S to A. Let Γ = {τ = s0, a0, r0, · · · sH , aH , rH s.t. si ∈ S, ai ∈
A, ri ∈ R} be the set of possible trajectories enriched by sequences of partial rewards under some
policy π. The undiscounted reward functionR : Γ→ R (which expectation is to be maximized by
optimizing θ) satisfiesR(τ) =

∑H
i=0 ri, where ri = R(si+1, ai, si).

3.1 Behavioral Embeddings

In this work we identify a policy with what we call a Policy Embedding. We focus on two types of
Policy Embeddings both of which are probabilistic in nature, on policy and off policy embeddings,
the first being trajectory based and the second ones state-based.

3.1.1 On Policy Embeddings

We start with a Behavioral Embedding Map (BEM), Φ : Γ→ E , mapping trajectories to embeddings
(Fig. 1), where E can be seen as a behavioral manifold. On Policy Embeddings can be for example:
a) State-Based, such as the final state Φ1(τ) = sH b) Action-based: such as the concatenation of
actions Φ4(τ) = [a0, ..., aH ] or c) Reward-based: the total reward Φ5(τ) =

∑H
t=0 rt, reward-to-go

vector Φ6(τ) =
∑H
t=0 rt

(∑t
i=0 ei

)
(where ei ∈ RH+1 is a one-hot vector corresponding to i with

dimension index from 0 to H). Importantly, the mapping does not need to be surjective, as we see on
the example of the final state embedding.

*The embedding space can be discrete or continuous and the metric need not be smooth, and can be for
example a simple discrete {0, 1} valued criterion
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Figure 1: Behavioral Embedding Maps (BEMs) map trajectories to points in the behavior embedding space
E . Two trajectories may map to the same point in E .

Given a policy π, we let Pπ denote the distribution induced over the space of trajectories Γ and by PΦ
π

the corresponding pushforward distribution on E induced by Φ. We call PΦ
π the policy embeddings

of a policy π. A policy π can be fully characterized by the distribution Pπ (see: Fig. 1).

Additionally, we require E to be equipped with a metric (or cost function) C : E ×E → R. Given two
trajectories τ1, τ2 in Γ, C(Φ(τ1),Φ(τ2)) measures how different these trajectories are in the behavior
space. We note that some embeddings are only for the tabular case (|S|, |A| <∞) while others are
universal.

3.1.2 Off Policy Embeddings

Let PS be some “probe” distribution over states S and π be a policy. We define PΦS
π to be the

distribution of pairs (s, π(s)) for s ∼ PS . We identify E with the product space S ×∆A (where ∆A
denotes the set of distributions over A) endowed with an appropriate metric C : E × E → R.In our
experiments we identify C with the l2 norm over E and PS with a mechanism that samples states
from a buffer of visited states. We only add an S to the notation for PΦS

π when distinguishing from
on-policy embeddings is needed.

This definition allows the “probing” distribution PS to be off policy, independent of the policy at
hand. If C is a norm and PS has mass only in user-relevant areas of the state space, a WD of zero
between two policies (whose embeddings use the same probing distribution) implies they behave
equally where the user cares. Our off Policy Embeddings are of the form (s, π(s)) but other choices
are valid.

4 Wasserstein Distance & Optimal Transport Problem

Let µ, ν be (Radon) probability measures over domains X ⊆ Rm,Y ⊆ Rn and let C : X × Y → R
be a cost function. For γ > 0, a smoothed Wasserstein Distance is defined as:

WDγ(µ, ν) := min
π∈Π(µ,ν)

∫
X×Y

C(x,y)dπ(x,y) + Σ, (1)

where Σ = γKL(π|ξ), Π(µ, ν) is the space of couplings (joint distributions) over X × Y with
marginal distributions µ and ν, KL(·|·) denotes the KL divergence between distributions π and ρ
with support X × Y defined as: KL(π|ρ) =

∫
X×Y

(
log
(
dπ
dξ (x,y)

))
dπ(x,y) and ξ is a reference

measure over X × Y . When the cost is an `p distance and γ = 0, WDγ is also known as the Earth
mover’s distance and the corresponding optimization problem is known as the optimal transport
problem (OTP).

4.1 Wasserstein Distance: Dual Formulation

We will use smoothed WDs to derive efficient regularizers for RL algorithms. To arrive at this goal,
we first need to consider the dual form of Equation 1. Under the subspace topology [4] for X and Y ,
let C(X ) and C(Y) denote the space of continuous functions over X and Y respectively. The choice
of the subspace topology ensures our discussion encompasses the discrete case.

Let C : X × Y → R be a cost function, interpreted as the “ground cost” to move a unit of mass from
x to y. Define I as the function outputting values of its input predicates. Using Fenchel duality, we
can obtain the following dual formulation of the problem in Eq. 1:

WDγ(µ, ν) = max
λµ∈C(X ),λν∈C(Y)

Ψ(λµ, λν), (2)

4



Algorithm 1 Random Features Wasserstein SGD
Input: kernels κ, ` over X ,Y respectively with corresponding random feature maps φκ, φ`, smooth-
ing parameter γ, gradient step size α, number of optimization rounds M , initial dual vectors pµ0 ,p

ν
0 .

for t = 0, · · · ,M do
1. Sample (xt, yt) ∼ µ

⊗
ν.

2. Update:
(
pµt
pνt

)
using Equation 4.

Return: pµM ,p
ν
M .

where Ψ(λµ, λν) =
∫
X λµ(x)dµ(x) −

∫
Y λν(y)dν(y) − EC(λµ, λν) and the damping term

EC(λµ, λν) equals:

EC(λµ, λν) = I(γ > 0)

∫
X×Y

ρ(x,y)dξ(x,y) + I(γ = 0)I(A) (3)

for ρ(x,y) = γ exp(
λµ(x)−λν(y)−C(x,y)

γ ) and A = [(λµ, λν) ∈ {(u, v) s.t. ∀(x,y) ∈ X × Y :

u(x)− v(y) ≤ C(x,y)}].
We will set the damping distribution dξ(x,y) ∝ 1 for discrete domains and dξ(x,y) = dµ(x)dν(y)
otherwise.

If λ∗µ, λ
∗
ν are the functions achieving the maximum in Eq. 2, and γ is sufficiently small then

WDγ(µ, ν) ≈ Eµ
[
λ∗µ(x)

]
− Eν [λ∗ν(y)], with equality when γ = 0. When for example γ = 0,

X = Y , and C(x, x) = 0 for all x ∈ X , it is easy to see λ∗µ(x) = λ∗ν(x) = λ∗(x) for all x ∈ X .
In this case the difference between Eµ [λ∗(x)] and Eµ [λ∗(y)] equals the WD. In other words, the
function λ∗ gives higher scores to regions of the space X where µ has more mass. This observation
is key to the success of our algorithms in guiding optimization towards desired behaviors.

4.2 Computing λ∗µ and λ∗ν

We combine several techniques to make the optimization of objective from Eq. 2 tractable. First,
we replace X and Y with the functions from a RKHS corresponding to universal kernels [22].
This is justified since those function classes are dense in the set of continuous functions of their
ambient spaces. In this paper we choose the RBF kernel and approximate it using random Fourier
feature maps [26] to increase efficiency. Consequently, the functions λ learned by our algorithms
have the following form: λ(x) = (pλ)>φ(x), where φ is a random feature map with m standing
for the number of random features and pλ ∈ Rm. For the RBF kernel, φ is defined as follows:
φ(z) = 1√

m
cos(Gz + b) for z ∈ Rd, where G ∈ Rm×d is Gaussian with iid entries taken from

N (0, 1), b ∈ Rm with iid bis such that bi ∼ Unif[0, 2π] and the cos function acts elementwise.

Figure 2: Two policies π1 (green) and π2 (blue) whose BEMs map trajectories to points in the real line.

Henceforth, when we refer to optimization over λ, we mean optimizing over corresponding dual
vectors pλ associated with λ. We can solve for the optimal dual functions by running Stochastic
Gradient Descent (SGD) over the dual objective in Eq. 2. Algorithm 1 is the random features
equivalent of Algorithm 3 in [12]. Given input kernels κ, ` and a fresh sample (xt, yt) ∼ µ

⊗
ν the

SGD step w.r.t. the current iterates pµt−1,p
ν
t−1 satisfies:

F (p1,p2, x, y) = exp

(
(p1)>φκ(x)− (p2)>φ`(x)− C(x, y)

γ

)
(
pµt+1

pνt+1

)
=

(
pµt
pνt

)
+ (1− F (pµt ,p

ν
t , xt, yt)) vt, (4)
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where vt = α√
t
(φκ(xt),−φ`(yt))>. An explanation and proof of these formulae is in Lemma C.2

in the Appendix. If pµ∗ ,pν∗ are the optimal dual vectors, p∗ = (pµ∗ ,p
ν
∗)
>, (x1, y1), · · · , (xk, yk)

i.i.d∼
µ
⊗
ν, vκ,`i = (φκ(xi),−φ`(yi))> for all i, and Ê denotes the empirical expectation over the k

samples {(xi, yi)}ki=1, Algorithm 1 can be used to get an estimator of WDγ(µ, ν) as:

ŴDγ(µ, ν) = Ê
[
〈p∗,vκ,`i 〉 −

F (pµ∗ ,p
ν
∗ , xi, yi)

γ

]
(5)

5 Behavior-Guided Reinforcement Learning

We explain now how to get practical algorithms based on the presented methods. Denote by πθ
a policy parameterized by θ ∈ Rd. The goal of policy optimization algorithms is to find a policy
maximizing, as a function of the policy parameters, the expected total reward L(θ) := Eτ∼Pπθ [R(τ)].

5.1 Behavioral Test Functions

If C : E × E → R is a cost function defined over behavior space E , and π1, π2 are two policies, then
in the case of On-Policy Embeddings:

WDγ(PΦ
π1
,PΦ
π2

) ≈ E
τ∼Pπ1

[λ∗1(Φ(τ))]− E
τ∼Pπ2

[λ∗2(Φ(τ))] ,

where λ∗1, λ
∗
2 are the optimal dual functions. The maps s1 := λ∗1 ◦ Φ : Γ → R and s2 := λ∗2 ◦ Φ :

Γ→ R define score functions over the space of trajectories. If γ is close to zero, the score function
si gives higher scores to trajectories from πi whose behavioral embedding is common under πi but
rarely appears under πj for j 6= i (Fig. 2). In the case of Off-Policy Embeddings:

WDγ(PΦS
π1
,PΦ′S
π2 ) ≈ E

S∼PS
[λ∗1(S, π1(S))]− E

S∼P′S
[λ∗2(S, π2(S))] ,

where λ∗1, λ
∗
2 are maps from state policy pairs (S, π1(S)) to scores, and PS ,P′S are probing distribu-

tions.

5.2 Repulsion and Imitation Learning

To illustrate the intuition behind behavioral test functions and on policy embeddings, we introduce an
algorithm for multi-policy repulsion learning based on our framework. Algorithm 2 maintains two
policies πa and πb.

Algorithm 2 Behvaior-Guided Repulsion Learning
Input: β, η > 0, M ∈ N
Initialize: Initial stochastic policies πa

0 , π
b
0 , parametrized by θa0 , θ

b
0 respectively, Behavioral Test

Functions λa1 , λ
b
2

for t = 1, . . . , T do
1. Collect {τai }Mi=1 ∼ Pπa

t−1
and {τbi }Mi=1 ∼ Pπb

t−1
.

2. Form R̃c(τ1, τ2) for c ∈ {a,b} using Equation 6.
3. For c ∈ {a,b} and (τ1, τ2) ∼ {τai }Mi=1 × {τbi }Mi=1 use REINFORCE [36] to perform update:

θct = θct−1 + η∇θR̃c(τ1, τ2)

5. Update λa1 , λ
b
2 with {τai , τbi }Mi=1 via Algorithm 1.

Each policy is optimized by taking a policy gradient step (using the REINFORCE gradient estimator
[36]) to optimize surrogate rewards R̃a and R̃b.

6



(a) πa
0 (b) πb

0 (c) λa & −λb, t = 0

(d) πa
22 (e) πb

22 (f) λa & −λb, t = 22

(g) πa
118 (h) πb

118 (i) λa & −λb, t = 118

Figure 3: a) and b) Initial state of policies πa, πb and Test functions λa, λb. d)-i) Policy evolution and Test
Functions.

These combine the signal from the task’s reward functionR and the repulsion score encoded by the
input BEM Φ and behavioral test functions λa and λb:

R̃c(τa, τb) = R(τc) + βŴDγ(PΦ
πa ,PΦ

πa), c ∈ {a,b} (6)

We test Algorithm 2 on an environment consisting of a particle that needs to reach one of two goals
on the plane. Policies outputs a velocity vector and stochasticity is achieved by adding Gaussian
noise to it. The embedding Φ maps trajectories τ to their mean displacement along the x−axis. Fig.
3 shows how the policies’ behavior evolves throughout optimization and how the Test Functions
guide the optimization by favouring the two policies to be far apart. The experiment details are in
the Appendix (Section B.4). A related guided trajectory scoring approach to imitation learning is
explored in Appendix B.3.

5.3 Algorithms

We propose to solve a WD-regularized objective to tackle behavior-guided policy optimization. All
of our algorithms hinge on trying to maximize an objective of the form:

F (θ) = L(θ) + βWDγ(PΦ
πθ
,PΦ

b ), (7)

where PΦ
b is a base distribution* over behavioral embeddings (possibly dependent on θ) and β ∈ R

could be positive or negative. Although the base distribution PΦ
b could be arbitrary, our algorithms

will instantiate PΦ
b = 1

|S| ∪π′∈S P
Φ
π′ for some family of policies S (possibly satisfying |S| = 1) we

want the optimization to attract to / repel from.

In order to compute approximate gradients for F , we rely on the dual formulation of the WD.
After substituting the composition maps resulting from Eq. 5.1 into Eq. 7, we obtain, for on-policy
embeddings:

F (θ) ≈ Eτ∼Pπθ [R(τ) + βs1(τ)]− βEφ∼PΦ
b

[λ∗2(φ)] , (8)

*Possibly using off policy embeddings.

7



where s1 : Γ→ R equals s1 = λ∗1◦Φ, the Behavioral Test Function of policy πθ and λ∗2 is the optimal
dual function of embedding distribution PΦ

b . Consequently ∇θF (θ) ≈ ∇θEτ∼Pπθ [R(τ) + βs1(τ)].
We learn a score function s1 over trajectories that can guide our optimization by favoring those
trajectories that show desired global behaviors. For off-policy embeddings, with state probing
distributions PS and PbS the analogous to Equation 9 is:

F (θ) ≈ Eτ∼Pπθ [R(τ)] + βE(S,πθ(S))∼PΦS [λ∗1(S, πθ(S))]

− βE
(S,πb(S))∼PΦS

b

[λ∗2(S, πb(S))] , (9)

Consequently, if PΦS
b is independent from θ:

∇θF (θ) ≈ ∇θEτ∼Pπθ [R(τ)] + βEs∼PS [∇θλ∗1(s, πθ(s))] .

Eq. 8 and 9 are approximations to the true objective from Eq. 7 whenever γ > 0. In practice, the
entropy regularization requires a damping term EC(λ∗1, λ

∗
2) as defined in Equation 3. If ξ(PΦ

πθ
,PΦ

b )

is the damping joint distribution of choice and ρ(φ1, φ2) = γ exp
(
λπθ (φ1)−λb(φ2)−C(φ1,φ2)

γ

)
(for off policy embeddings φ is a state policy pair (S, π(S))), the damping term equals:
Eφ1,φ2∼ξ(PΦ

πθ
,PΦ

b ) [ρ(φ1, φ2)]. Gradients ∇θ through EC can be derived using a similar logic as

the gradients above. When the embedding space E is not discrete and PΦ
b = PΦ

π for some policy π,
we let ξ(PΦ

πθ
,PΦ

b ) = PΦ
πθ

⊗
PΦ
π , otherwise ξ(PΦ

πθ
,PΦ

b ) = 1
|E|2 1, a uniform distribution over E × E .

All of our methods perform a version of alternating SGD optimization: we take certain number of
SGD steps over the internal dual Wasserstein objective, followed by more SGD steps over the outer
objective having fixed the test functions.

We consider two approaches to optimizing this objective. Behavior-Guided Policy Gradient (BGPG)
explores in the action space as in policy gradient methods [31, 32], while Behavior-Guided Evolution
Strategies (BGES) considers a black-box optimization problem as in Evolution Strategies (ES, [30]).

5.4 Behavior-Guided Policy Gradient (BGPG)

Here we present the Behavior-Guided Policy Gradient (BGPG) algorithm (Alg. 3). Specifically, we
maintain a stochastic policy πθ and compute policy gradients as in prior work [31].

Algorithm 3 Behavior-Guided Policy Gradient
Input: Initialize stochastic policy π0 parametrized by θ0, β < 0, η > 0, M ∈ N
for t = 1, . . . , T do

1. Run πt−1 in the environment to get advantage values Aπt−1(s, a) and trajectories {τ (t)
i }Mi=1

2. Update policy and test functions via several alternating policy gradient steps over F (θ).
3. Use samples from Pπt−1

⊗
Pπθ and Algorithm 1 to update λ1, λ2 and take SGA step θt =

θt−1 + η∇̂θF̂ (θt−1)

For on-policy embeddings the objective function F (θ) takes the form:
F (θ) = E

τ1,τ2∼Pπt−1

⊗
Pπθ

[
R̂(τ1, τ2)

]
, (10)

where R̂(τ1, τ2) =
∑
Aπt−1(si, ai)

πθ(ai|si)
πt−1(ai|si)

+ ŴDγ(PΦ
πt−1

,PΦ
πθ ). To optimize the Wasserstein dis-

tance we use Algorithm 1. Importantly, stochastic gradients of F (θ) can be approximated by samples
from πθ. In its simplest form, the gradient ∇̂θF̂ can be computed by the vanilla policy gradient
over the advantage component and using the REINFORCE estimator through the components in-
volving Test Functions acting on trajectories from Pπθ . For off-policy embeddings, ∇̂θF̂ can be
computed by sampling from the product of the state probing distributions. Gradients through the
differentiable test functions can be computed by the chain rule: ∇θλ(S, πθ(S)) = (∇φλ(φ))>∇θφ
for φ = (S, πθ(S)).

BGPG can be thought of as a variant of Trust Region Policy Optimization with a Wasserstein penalty.
As opposed to vanilla TRPO, the optimization path of BGPG flows through policy parameter space
while encouraging it to follow a smooth trajectory through the geometry of the behavioral manifold.
We proceed to show that given the right embedding and cost function, we can prove a monotonic

8



improvement theorem for BGPG, showing that our methods satisfy at least similar guarantees as
TRPO.

Furthermore, Let V (π) be the expected reward of policy π and ρπ(s) = Eτ∼Pπ
[∑T

t=0 1(st = s)
]

be the visitation measure.

Two distinct policies π and π̃ can be related via the equation (see: [33]) V (π̃) = V (π) +∫
S ρπ̃(s)

(∫
A π̃(a|s)Aπ(s, a)da

)
ds and the linear approximations to V around π via: L(π̃) =

V (π) +
∫
S ρπ(s)

(∫
A π̃(a|s)Aπ(s, a)da

)
ds (see: [14]). Let S be a finite set. Consider the follow-

ing embedding Φs : Γ → R|S| defined by (Φ(τ))s =
∑T
t=0 1(st = s) and related cost function

defined as: C(v,w) = ‖v −w‖1. Then WD0(PΦs

π̃ ,PΦs

π ) is related to visitation frequencies since
WD0(PΦs

π̃ ,PΦs

π ) ≥
∑
s∈S |ρπ(s) − ρπ̃(s)|. These observations enable us to prove an analogue of

Theorem 1 from [31] (see Section C.2 for the proof), namely:

Theorem 5.1. If WD0(PΦs

π̃ ,PΦs

π ) ≤ δ and ε = maxs,a |Aπ(s, a)|, then V (π̃) ≥ L(θ̃)− δε.

As in [31], Theorem 5.1 implies a policy improvement guarantee for BGPG.

5.5 Behavior Guided Evolution Strategies (BGES)

ES takes a black-box optimization approach to RL, by considering a rollout of a policy, parameterized
by θ as a black-box function F . This approach has gained in popularity recently [30, 20, 6].

Algorithm 4 Behavior-Guided Evolution Strategies
Input: learning rate η, noise standard deviation σ, iterations T , BEM Φ, β (> 0 for repulsion, < 0
for imitation).
Initialize: Initial policy π0 parametrized by θ0, Behavioral Test Functions λ1, λ2. Evaluate policy
π0 to return trajectory τ0
for t = 1, . . . , T − 1 do

1. Sample ε1, · · · , εn independently from N (0, I).
2. Evaluate policies {πkt }nk=1 parameterized by {θt + σεk}nk=1, get rewards Rk and trajectories
τk for all k.
3. Update λ1 and λ2 using Algorithm 1.
4. Approximate ŴDγ(PΦ

πkt
,PΦ
πt) plugging in λ1, λ2 into Eq. 5 for each perturbed policy πk

5. Update Policy: θt+1 = θt + η∇ESF , where:
∇ESF =

1

σ

n∑
k=1

[(1− β)(Rk −Rt) + βŴDγ(PΦ
πkt
,PΦ
πt)]εk

If we take this approach to optimizing the objective in Eq. 7, the result is a black-box optimization
algorithm which seeks to maximize the reward and simultaneously maximizes or minimizes the
difference in behavior from the base embedding distribution PΦ

b . We call it Behavior-Guided Evolution
Strategies (BGES) algorithm (see: Alg. 4).

When β > 0, and we take PΦ
b = PΦ

πt−1
, BGES resembles the NSR-ES algorithm from [7], an

instantiation of novelty search [19]. The positive weight on the WD-term enforces newly constructed
policies to be behaviorally different from the previous ones while theR−term drives the optimization
to maximize the reward. The key difference in our approach is the probabilistic embedding map, with
WD rather than Euclidean distance. We show in Section 7.2 that BGES outperforms NSR-ES for
challenging exploration tasks.

6 Related Work

Our work is related to research in multiple areas in neuroevolution and machine learning:

Behavior Characterizations: The idea of directly optimizing for behavioral diversity was intro-
duced by [19] and [18], who proposed to search directly for novelty, rather than simply assuming
it would naturally arise in the process of optimizing an objective function. This approach has been
applied to deep RL [7] and meta-learning [11]. In all of this work, the policy is represented via a
behavioral characterization (BC), which requires domain knowledge. In our setting, we move from
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deterministic BCs to stochastic behavioral embeddings, thus requiring the use of metrics capable of
comparing probabilistic distributions.

Distance Metrics: WDs have been used in many applications in machine learning where guarantees
based on distributional similarity are required [13, 1]. We make use of WDs in our setting for a variety
of reasons. First and foremost, the dual formulation of the WD allows us to recover Behavioral Test
Functions, providing us with behavior-driven trajectory scores. In contrast to KL divergences, WDs
are sensitive to user-defined costs between pairs of samples instead of relying only on likelihood ratios.
Furthermore, as opposed to KL divergences, it is possible to take SGD steps using entropy-regularized
Wasserstein objectives. Computing an estimator of the KL divergence is hard without a density model.
Since in our framework multiple unknown trajectories may map to the same behavioral embedding,
the likelihood ratio between two embedding distributions may be ill-defined.

WDs for RL: We are not the first to propose using WDs in RL. [37] have recently introduced
Wasserstein Gradient Flows (WGFs), which casts policy optimization as gradient descent flow on
the manifold of corresponding probability measures, where geodesic lengths are given as second-
order WDs. We note that computing WGFs is a nontrivial task. In [37] this is done via particle
approximation methods, which we show in Section 7 is substantially slower than our methods. The
WD has also been employed to replace KL terms in standard Trust Region Policy Optimization [27].
This is a very special case of our more generic framework (cf. Section 5.3). In [27] it is suggested
to solve the corresponding RL problems via Fokker-Planck equations and diffusion processes, yet
no empirical evidence of the feasibility of this approach is provided. We propose general practical
algorithms and provide extensive empirical evaluation.

Distributional RL Distributional RL (DRL, [2]) expands on traditional off-policy methods [23]
by attempting to learn a distribution of the return from a given state, rather than just the expected
value. These approaches have impressive experimental results [2, 8], with a growing body of theory
[28, 25, 3, 29]. Superficially it may seem that learning a distribution of returns is similar to our
approach to PPEs, when the BEM is a distribution over rewards. Indeed, reward-driven embeddings
used in DRL can be thought of as special cases of the general class of BEMs. We note two key
differences: 1) DRL methods are off-policy whereas our BGES and BGPG algorithms are on-policy,
and 2) DRL is typically designed for discrete domains, since Q-Learning with continuous action
spaces is generally much harder. Furthermore, we note that while the WD is used in DRL, it is only
for the convergence analysis of the DRL algorithm [2].

7 Experiments

Here we seek to test whether our approach to RL translates to performance gains for by evaluating
BGPG and BGES, versus their respective baselines for a range of tasks. For each subsection we
provide additional details in the Appendix.

7.1 Behavior-Guided Policy Gradient

Our key question is whether our techniques lead to outperformance for BGPG vs. baseline TRPO
methods using KL divergence, which are widely used in the reinforcement learning community. For
the BEM, we use the concatenation-of-actions, as used already in TRPO. We consider a variety of
challenging problems from the DeepMind Control Suite [34] and Roboschool (RS). In Fig. 4 we see
that BGPG does indeed outperform KL-based TRPO methods, with gains across all six environments.
We also confirm results from [31] that a trust region typically improves performance.
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(a) HalfCheetah (b) Ant (c) Hopper: Hop

(d) RS: HalfCheetah (e) Walker: Stand (f) RS: Walker2d

Figure 4: BGPG vs. TRPO: We compare BGPG and TRPO (KL divergence) on several continuous control
tasks. As a baseline we also include results without a trust region (β = 0 in Algorithm 3). Plots show the
mean± std across 5 random seeds.

Wall Clock Time: To illustrate computational benefits of alternating optimization of WD in BGPG,
we compare it to the method introduced in [37]. In practice, the WD across different state samples
can be optimized in a batched manner, details of which are in the Appendix. In Table 7.1 we see that
BGPG is substantially faster.

Table 1: Clock time (s) to achieve a normalized reward of 90% of the best achieved. All experiments were run
on the same CPU.

[37] BGPG

Pendulum 3720 777
Hopper: Stand 26908 10817
Hopper: Hop 23542 12820
Walker: Stand 13497 4082

7.2 Behavior-Guided Evolution Strategies

Next we seek to evaluate the ability for BGES to use its behavioral repulsion for exploration.

Deceptive Rewards A common challenge in RL is deceptive rewards. These arise since agents can
only learn from data gathered via experience in the environment. To test BGES in this setting, we
created two intentionally deceptive environments. In both cases the agent is penalized at each time
step for its distance from a goal. The deception comes from a barrier, which means initially positive
rewards from moving directly forward will lead to a suboptimal policy.

We consider two agents—a two-dimensional point and a larger quadruped. Details are provided in
the Appendix (Section B). We compare with state-of-the-art on-policy methods for exploration: NSR-
ES [7], which assumes the BEM is deterministic and uses the Euclidean distance to compare policies,
and NoisyNet-TRPO [10]. We used the reward-to-go and final state BEMs for the quadruped and
point respectively.
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(a) Quadruped (b) Point

Figure 5: Deceptive Rewards. Plots show the mean ± std across 5 random seeds for two environments:
Quadruped and Point.

Policies avoiding the wall correspond to rewards: R > −5000 and R > −800 for the quadruped
and point respectively. In the prior case an agent needs to first learn how to walk and the presence of
the wall is enough to prohibit vanilla ES from even learning forward locomotion. As we see in Fig. 5,
BGES is the only method that drives the agent to the goal in both settings.

8 Conclusion and Future Work

In this paper we proposed a new paradigm for on-policy learning in RL, where policies are em-
bedded into expressive latent behavioral spaces and the optimization is conducted by utilizing the
repelling/attraction signals in the corresponding probabilistic distribution spaces. The use of Wasser-
stein distances (WDs) guarantees flexibility in choosing cost funtions between embedded policy
trajectories, enables stochastic gradient steps through corresponding regularized objectives (as op-
posed to KL divergence methods) and provides an elegant method, via their dual formulations, to
quantify behaviorial difference of policies through the behavioral test functions. Furthermore, the
dual formulations give rise to efficient algorithms optimizing RL objectives regularized with WDs.

We also believe the presented methods shed new light on several other challenging problems of
modern RL, including: learning with safety guarantees (a repelling signal can be used to enforce
behaviors away from dangerous ones) or anomaly detection for reinforcement learning agents (via the
above score functions). Finally, we are interested in extending our method to the off policy setting.
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Appendix: Behavior-Guided Reinforcement Learning

A Additional Experiments

Figure 6: Escaping Local Maxima A comparison of BGES with those using different distances on Policy
Embeddings.

A.1 Escaping Local Maxima.

In Fig. 6 we compare our methods with methods using regularizers based on other distances or
divergences (specifically, Hellinger, Jensen-Shannon (JS), KL and Total Variation (TV) distances), as
well as vanilla ES (i.e., with no distance regularizer). Experiments were performed on a Swimmer
environment from OpenAI Gym [5], where the number of samples of the ES optimizer was drastically
reduced. BGES is the only one that manages to obtain good policies which also proves that the
benefits come here not just from introducing the regularizer, but from its particular form.

A.2 Imitation Learning

Figure 7: Imitation Learning.

As discussed in Section 5.4, we can also utilize the BGES algorithm for imitation learning, by setting
β < 0, and using an expert’s trajectories for the Policy Embedding. For this experiment we use
the reward-to-go BEM (Section 5). In Fig. 7, we show that this approach significantly outperforms
vanilla ES on the Swimmer task. Although conceptually simple, we believe this could be a powerful
approach with potential extensions, for example in designing safer algorithms.
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B Further Experimental Details

B.1 BGPG

Here we reproduce a full version of Algorithm 3:

Algorithm 5 Behvaior-Guided Policy Gradient with On-Policy Embeddings
Input: Initialize stochastic policy π0 parametrized by θ0, β < 0, η > 0, M,L ∈ N
for t = 1, . . . , T do

1. Run πt−1 in the environment to get advantage values Aπt−1(s, a) and trajectories {τ (t)
i }Mi=1

2. Update policy and test functions via several alternating gradient steps over the objective:

F (θ) = E
τ1,τ2∼Pπt−1

⊗
Pπθ

[ H∑
i=1

Aπt−1(si, ai)
πθ(ai|si)
πt−1(ai|si)

+ βλ1(Φ(τ1))− βλ2(Φ(τ2)) + βγ exp

(
λ1(Φ(τ1))− λ2(Φ(τ2))− C(Φ(τ1)),Φ(τ2))

γ

)]
Where τ1 = s0, a0, r0, · · · , sH , aH , rH . Let θ(0)

t−1 = θt−1.
for ` = 1, · · · , L do

a. Approximate Pπt−1

⊗
Pπθ via 1

M {τ
(t)
i }Mi=1

⊗
1
M {τ

θ
i }Mi=1 := P̂πt,πθ where τθi

i.i.d∼ Pπθ
b. Take SGA step θ(`)

t−1 = θ
(`−1)
t−1 + η∇̂θF̂ (θ

(`−1)
t−1 ) using samples from P̂πt−1,πθ .

c. Use samples from P̂πt−1,πθ and Algorithm 1 to update λ1, λ2.

Set θt = θ
(M)
t−1 .

Algorithm 6 Behvaior-Guided Policy Gradient with Off-Policy Embeddings
Input: Initialize stochastic policy π0 parametrized by θ0, β < 0, η > 0, M,L ∈ N, state probing
distribution PS0 .
for t = 1, . . . , T do

1. Run πt−1 in the environment to get advantage values Aπt−1(s, a) . 2. Update policy and test
functions via several alternating gradient steps over the objective:

F (θ) = E
τ1∼Pπt−1

[ H∑
i=1

Aπt−1(si, ai)
πθ(ai|si)
πt−1(ai|si)

]
+ Es1,s2∼PSθ

⊗
PSt−1

[
βλ1(s1, πθ(s1))− βλ2(s2, πt−1(s2))

+ βγ exp

(
λ1(s1, πθ(s1))− λ2(s2, πt−1(s2))− C((s1, πθ(s1)), (s2, πt−1(s2)))

γ

)]
Where τ1 = s0, a0, r0, · · · , sH , aH , rH . Let θ(0)

t−1 = θt−1.
for ` = 1, · · · , L do

a. Approximate the expectation Es1,s2∼PSθ
⊗

PSt−1
via 2M samples.

b. Take SGA step θ(`)
t−1 = θ

(`−1)
t−1 + η∇̂θF̂ (θ

(`−1)
t−1 ) using samples from a. and trajectories

from current πθ.
c. Use samples from a. and Algorithm 1 to update λ1, λ2.

Set θt = θ
(M)
t−1 .

A Lower-variance Gradient Estimator via Off-Policy embeddings: As explained in Section
5.2, the BGPG considers an objective which involves two parts: the conventional surrogate loss
function for policy optimization [32], and a loss function that involves the Behavior Test Functions.
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Though we could apply vanilla reinforced gradients on both parts, it is straightforward to notice that
the second part can be optimized with reparameterized gradients [15], which arguably have lower
variance compared to the reinforced gradients. In particular, we note that under random feature
approximation (5), as well as the action-concatenation embedding, the Wasserstein distance loss
ŴDγ(PΦ

πθ
, PΦ

b ) is a differentiable function of θ. To see this more clearly, notice that under a Gaussian
policy a ∼ N (µθ(s), σθ(s)

2) the actions a = µθ(s) + σθ(s) · ε are reparametrizable for ε being
standard Gaussian noises. We can directly apply the reparametrization trick to this second objective
to obtain a gradient estimator with potentially much lower variance. In our experiments, we applied
this lower-variance gradient estimator. In Algorithm 6 we allow the state probing distribution to
evolve with the iteration index of the algorithm t.

Trust Region Policy Optimization: Though the original TRPO [31] construct the trust region
based on KL-divergence, we propose to construct the trust region with WD. For convenience, we
adopt a dual formulation of the trust region method and aim to optimize the augmented objective
Eτ∼πθ [R(τ)]− βWDγ(PΦ

π′ ,PΦ
πθ

). We apply the concatenation-of-actions embedding and random
feature maps to calculate the trust region. We identify several important hyperparameters: the RKHS
(for the test function) is produced by RBF kernel k(x, y) = exp(‖x − y‖22/σ2) with σ = 0.1; the
number of random features is D = 100; recall the embedding is Φ(τ) = [a1, a2...aH ] where H
is the horizon of the trajectory, here we take 10 actions per state and embed them together, this
is equivalent to reducing the variance of the gradient estimator by increasing the sample size; the
regularized entropy coefficient in the WD definition as γ = 0.1; the trust region trade-off constant
β ∈ {0.1, 1, 10}. The alternate gradient descent is carried out with T = 100 alternating steps and
test function coefficients p ∈ RD are updated with learning rate αp = 0.01.

The baseline algorithms are: No trust region, and trust region with KL-divergence. The KL-divergence
is identified by a maximum KL-divergence threshold per update, which we set to ε = 0.01.

Across all algorithms, we adopt the open source implementation [9]. Hyper-parameters such as
number of time steps per update as well as implementation techniques such as state normalization are
default in the original code base.

The additional experiment results can be found in Figure 8 where we show comparison on additional
continuous control benchmarks: Tasks with DM are from DeepMind Contol Suites [34]. We see that
the trust region constructed from the WD consistently outperforms other baselines (importantly, trust
region methods are always better than the baseline without trust region, this confirms that trust region
methods are critical in stabilizing the updates).

(a) Reacher (b) MountainCar (c) Acrobot

Figure 8: Additional Experiment on TRPO. We compare No Trust Region with two alternative trust region
constructions: KL-divergence and Wassertein distance (ours).

Wasserstein AO vs. Particle Approximation: To calculate the regularized Wasserstein distance,
we propose a gradient descent method that iteratively updates the test function. The alternting
optimization (AO) scheme consists of updating both the test function and the distribution parameters
such that the regularized Wasserstein distance of the trainable distribution against the reference
distribution is minimized. Alternatively, we can also adopt a particle approximation method to
calculate the Wasserstein distance and update the distribution parameters using an approximate
gradient descent method [37]. We see the benefit in clock time in Fig 9.
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(a) Pendulum (b) Hopper: Stand (c) Hopper: Hop (d) Walker: Stand

Figure 9: The clock-time comparison (in sec) of BGPG (alternating optimization) with particle approximation.

One major advantage of BGPG against particle approximation is its ease of parallelization. In
particular, when using the concatenation-of-actions embedding, the aggregate Wasserstein distance
can be decomposeed into an average of a set of Wasserstein distances over states. To calculate this
aggregated gradient, BGPG can easily leverage the matrix multiplication; on the other hand, particle
approximation requires that the dual optimal variables of each subproblem be computed, which is not
straightforward to parallelize.

We test both methods in the context of trust region policy search, in which we explicitly calculate the
Wasserstein distance of consecutive policies and enforce the constraints using a line search as in [31].
Both methods require the trust region trade-off parameter β ∈ {0.1, 1, 10}. We adopt the particle
method in [37] where for each state there are M = 16 particles. The gradients are derived based
a RKHS where we adaptively adjust the coefficient of the RBF kernel based on the mean distance
between particles. For the AO, we find that it suffices to carry out T ∈ {1, 5, 10} gradient descents to
approximate the regularized Wasserstein distance.

B.2 BGES

Here we reproduce a detailed version of Algorithm 4:

Algorithm 7 Behavior-Guided Evolution Strategies with On-Policy Embeddings
Input: learning rate η, noise standard deviation σ, iterations T , BEM Φ, β
Initialize: Initial policy π0 parametrized by θ0, Behavioral Test Functions λ1, λ2. Evaluate policy
π0 to return trajectory τ0 and subsequently use the BEM to produce an initial P̂Φ

π0
.

for t = 1, . . . , T − 1 do
1. Sample ε1, · · · , εn independently from N (0, I).
2. Evaluate policies {πkt }nk=1 parameterized by {θt + σεk}nk=1 to return rewards Rk and trajecto-
ries τk for all k.
3. Use BEM to map trajectories τk to produce empirical P̂Φ

πkt
for all k.

4. Update λ1 and λ2 using Algorithm 1, where µ = 1
n ∪

n
k=1 P̂Φ

πkt−1
and ν = 1

n ∪
n
k=1 P̂Φ

πkt
are the

uniform distribution over the set of from 3 for t− 1 and t.
5. Approximate ŴDγ(PΦ

πkt
,PΦ
πt) plugging in λ1, λ2 into Eq. 5 for each perturbed policy πk

6. Update Policy: θt+1 = θt + η∇ESF , where:

∇ESF =
1

σ

n∑
k=1

[(1− β)(Rk −Rt) + βŴDγ(PΦ
πkt
,PΦ
πt)]εk

Efficient Exploration: To demonstrate the effectiveness of our method in exploring deceptive
environments, we constructed two new environments using the MuJoCo simulator. For the point
environment, we have a 6 dimensional state and 2 dimensional action, with the reward at each
timestep calculated as the distance between the agent and the goal. We use a horizon of 50 which is
sufficient to reach the goal. The quadruped environment is based on Ant from the Open AI Gym
[5], and has a similar reward structure to the point environment but a much larger state space (113)
and action space (8). For the quadruped, we use a horizon length of 400.
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To leverage the trivially parallelizable nature of ES algorithms, we use the ray library, and distribute
the rollouts across 72 workers using AWS. Since we are sampling from an isotropic Gaussian, we
are able to pass only the seed to the workers, as in [30]. However we do need to return trajectory
information to the master worker.

For both the point and quadruped agents, we use random features with dimensionality m = 1000,
and 100 warm-start updates for the WD at each iteration. For point, we use the final state embedding,
learning rate η = 0.1 and σ = 0.01. For the quadruped, we use the reward-to-go embedding, as
we found this was needed to learn locomotion, as well as a learning rate of η = 0.02 and σ = 0.02.
The hyper-parameters were the same for all ES algorithms. When computing the WD, we used the
previous 2 policies, θt−1 and θt−2.

Our approach includes several new hyperparameters, such as the kernel for the Behavioral Test
Functions and the choice of BEM. For our experiments we did not perform any hyperparameter
optimization. We only considered the rbf kernel, and only varied the BEM for BGES. For BGES, we
demonstrated several different BEMs, and we show an ablation study for the point agent in Fig. 12
where we see that both the reward-to-go (RTG) and Final State (SF) worked, but the vector of all
states (SV) did not (for 5 seeds). We leave learned BEMs as exciting future work.

(a) Embeddings (b) Previous Policies

Figure 10: A sensitivity analysis investigating a) the impact of the embedding and b) the number of
previous policies θt−i, i ∈ 1, 2, 5

For embeddings, we compare the reward-to-go (RTG), concatenation of states (SV) and final state
(SF). In both the RTG and SF case the agent learns to navigate past the wall (> −800). For the
number of previous policies, we use the SF embedding, and using 2 appears to work best, but both 1
and 5 do learn the correct behavior.

Escaping Local Maxima: We also demonstrated that our method leads to faster training even in
more standard settings, where exploration is not that crucial, but the optimization can be trapped in
local maxima. To show it, we compared baseline ES algorithm for ES optimization from [30] with its
enhancements, where regularizers using different metrics on the space of probabilistic distributions
corresponding to policy embeddings were used, as in the previous paragraph. We noticed that adding
Wasserstein regularizers drastically improved optimization, whereas regularizers based on other
distances/divergencies, namely: Hellinger, Jensen-Shannon, KL and TV did not have any impact. We
considered Swimmer task from OpenAI Gym and to make it challenging, reduced the number of
perturbations per iteration to 80. In that setting our method was the only one that was not trapped in
local maxima and managed to learn effective policies.

B.3 Imitation Learning:

For the Imitation Learning experiment we used the reward-to-go embedding, with learning rate
η = 0.1 and σ = 0.01. We use one oracle policy, which achieves > 360 on the environment. The only
information provided to the algorithm is the embedded trajectory, used to compute the WD. This has
exciting future applications since no additional information about the oracle is required in order to
significantly improve learning.

B.4 Repulsion Learning and Attraction learning

Here we reproduce a full version of Algorithm 2:
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Algorithm 8 Behvaior-Guided Repulsion (and Attraction) Learning with On-Policy Embeddings
Input: β, η > 0, M ∈ N
Initialize: Initial stochastic policies πa

0 , π
b
0 , parametrized by θa0 , θ

b
0 respectively, Behavioral Test

Functions λa1 , λ
b
2

for t = 1, . . . , T do
1. Collect M trajectories {τai }Mi=1 from Pπa

t−1
and M trajectories {τbi }Mi=1 from Pπb

t−1
.

Approximate Pπa
t−1

⊗
Pπb

t−1
via 1

M {τ
a
i }Mi=1

⊗
1
M {τ

b
i }Mi=1 := P̂πa

t−1,π
b
t−1

2. Form two distinct surrogate rewards for joint trajectories of agents a and b:

R̃a(τ1, τ2) = R(τ1) + βλa1(Φ(τ1)) + βγ exp

(
λa1(Φ(τ1))− λb2 (Φ(τ2))− C(Φ(τ1)),Φ(τ2))

γ

)
R̃b(τ1, τ2) = R(τ2)− βλb2 (Φ(τ2)) + βγ exp

(
λa1(Φ(τ1))− λb2 (Φ(τ2))− C(Φ(τ1)),Φ(τ2))

γ

)
3. For c ∈ {a,b} use the Reinforce estimator to take gradient steps:

θct = θct−1 + η E
τa,τb∼P̂

πa
t−1

,πb
t−1

[
R̃c(τa, τb)

(
H−1∑
i=0

∇θct−1
log
(
πc
t−1(aci |sci )

))]

Where τa = sa0 , a
a
0 , r

a
0 , · · · , saH , aaH , raH and τb = sb0 , a

b
0 , r

b
0 , · · · , sbH , abH , rbH .

5. Use samples from P̂πa
t−1,π

b
t−1

and Algorithm 1 to update the Behavioral Test Functions λa1 , λ
b
2 .

Algorithm 8 is the de version of the repulsion algorithm from Section 5.2. The algorithm maintains
two policies πa and πb. Each policy is optimized by taking a policy gradient step (using the Reinforce
gradient estimator) in the direction optimizing surrogate rewards R̃a and R̃b that combines the signal
from the task’s reward functionR and the repulsion (or attraction) score encoded by the behavioral
test functions λa and λb.

We conducted experiments testing Algorithm 2 on a simple Mujoco environment consisting of a
particle that moves on the plane and whose objective is to learn a policy that allows it to reach
one of two goals. Each policy outputs a velocity vector and stochasticity is achieved by adding
Gaussian noise to the mean velocity encoded by a neural network with two size 5 hidden layers and
ReLu activations. If an agent performs action a at state s, it moves to state a + s. The reward of
an agent after performing action a at state s equals −‖a‖2 ∗ 30 −min(d(s,Goal1), d(s,Goal2))2

where d(x, y) denotes the distance between x and y in R2. The initial state is chosen by sampling a
Gaussian distribution with mean

(
0
0

)
and diagonal variance 0.1. In each iteration step we sample 100

trajectories. In the following pictures we plot the policies’ behavior by plotting 100 trajectories of
each. The embedding Φ : Γ→ R maps trajectories τ to their mean displacement in the x−axis. We
use the squared absolute value difference as the cost function. When β < 0 we favour attraction and
the agent are encouraged to learn a similar policy to solve the same task.

(a) πa
0 (b) πb

0 (c) λa and −λb at t = 0

Figure 11: Initial state of policies πa, πb and Behavioral Test functions λa, λb in the Multigoal
environment.
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There are two optimal policies, moving the particle to the left goal or moving it to the right goal. We
now plot how the policies’ behavior and evolves throughout optimization and how the Behavioral
Test Functions guide the optimization by favouring the two policies to be close by or far apart.

(a) πa
22 (b) πb

22 (c) λa and −λb at t = 22

(d) πa
118 (e) πb

118 (f) λa and −λb at t = 118

Figure 12: Evolution of the policies and Behavioral Test Functions throughout optimization.

Let X and Y be the domains of two measures µ, and ν. Recall that in case γ = 0, X = Y , and
C(x, x) = 0 for all x ∈ X , then λ∗µ(x) = λ∗ν(x) = λ∗(x) for all x ∈ X . In the case of regularized
Wasserstein distances with γ > 0, this relationship may not hold true even if the cost satisfies the
same diagonal assumption. For example when the regularizing measure is the product measure,
and µ, ν have disjoint supports, since the soft constraint γ exp

(
λµ(x)−λν(y)−C(x,y)

γ

)
is enforced in

expectation over the product measure there may exist optimal solutions λ∗µ, λ
∗
ν that do not satisfy

λ∗µ = λ∗ν .

C Theoretical results

We start by exploring some properties of the Wasserstein distance and its interaction with some
simple classes of embeddings. The first lemma we show has the intention to show conditions under
which two policies can be shown to be equal provided the Wasserstein distance between its trajectory
embeddings is zero. This result implies that our framework is capable of capturing equality of policies
when the embedding space equals the space of trajectories.
Lemma C.1. Let S and A be finite sets, the MDP be episodic (i.e. of finite horizon H), and
Φ(τ) =

∑H
t=0 est,at with es,a ∈ R|S|+|A| the indicator vector for the state action pair (s, a). Let

C(v,w) = ‖v −w‖pp for p ≥ 1. If γ = 0 and WDγ(PΦ
π ,PΦ

π′) = 0 then π = π′.

Proof. If WDγ(PΦ
π ,PΦ

π′) = 0, there exists a coupling Π between PΦ
π and PΦ

π′ such that:

Eu,v∼Π

[
‖u− v‖pp

]
= 0

Consequently:

Eu,v∼Π

 ∑
(s,a)∈S×A

|us,a − vs,a|p
 =

∑
(s,a)∈S×A

Eu,v∼Π [|us,a − vs,a|p] = 0

Therefore for all (s, a) ∈ S ×A:∣∣∣Eu∼PΦ
π

[us,a]− Ev∼PΦ
π′

[vs,a]
∣∣∣p ≤ Eu,v∼Π [|us,a − vs,a|p] = 0
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Where us,a and vs,a denote the (s, a) entries of u and v respectively. Notice that for all (s, a) ∈ S×A:

PΦ
π (s, a) = PΦ

π′(s, a) (11)

Since for all s ∈ S and p ≥ 1:∣∣∣∣∣∑
a∈A

us,a − vs,a

∣∣∣∣∣
p

≤
∑
a∈A
|us,a − vs,a|p

Therefore for all s ∈ S:∣∣∣∣∣Eu∼PΦ
π

[∑
a∈A

us,a

]
− Ev∼PΦ

π′

[∑
a∈A

vs,a

]∣∣∣∣∣
p

≤ Eu,v∼Π

[∑
a∈A
|us,a − vs,a|p

]
= 0

Consequently PΦ
π (s) = PΦ

π′(s) for all s ∈ S. By Bayes rule, this plus equation 11 yields:

PΦ
π (a|s) = PΦ

π′(a|s)

And therefore: π = π′.

These results can be extended in the following ways:

1. In the case of a continuous state space, it is possible to define embeddings using Kernel
density estimators. Under the appropriate smoothness conditions on the visitation frequen-
cies, picking an adequate bandwidth and using the appropriate norm to compare different
embeddings it is possible to derive similar results to those in Lemma C.1 for continuous
state spaces.

2. For embeddings such as Φ5 in Section 3.1 or Φ(τ) =
∑H
t=0 est,at , when γ = 0, if

WDγ(PΦ
π ,PΦ

π′) ≤ ε then |V (π) − V (π′)| ≤ εR for R = maxτ∈ΓR(τ) thus implying
that a small Wasserstein distance between π and π′s PPEs implies a small difference in their
value functions.

C.1 Random features stochastic gradients

Let φκ and φ` be two feature maps over X and Y and corresponding to kernels κ and ` respectively.
For this and the following sections we will make use of the following expression:

G(pµ,pν) = β

∫
X

(pµ)
>
φκ(x)dµ(x, θ)− β

∫
Y

(pν)
>
φ`(y)dν(y)+ (12)

γβ

∫
X×Y

exp

(
(pµ)

>
φκ(x)− (pν)

>
φ`(y)− C(x,y)

γ

)
dµ(x)dν(y)

We now show how to compute gradients with respect to the random feature maps:

Lemma C.2. The gradient∇(pµ

pν)
G(pµ,pν) of the objective function from Equation 12 with respect

to the parameters
(
pµ

pν

)
satisfies:

∇(pµ

pν)
G(pµ,pν) = βE(x,y)∼µ

⊗
ν

[(
1− exp

(
(pµ)>φκ(x)− (pν)>φ` − C(x,y)

γ

))(
φκ(x)

−φ`(y)

)]

Proof. A simple use of the chain rule, taking the gradients inside the expectation, and the fact that
pµ and pν are vectors yields the desired result.

The main consequence of this formulation is the stochastic gradients we use in Algorithm 1.
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C.2 Behavior Guided Policy Gradient and Wasserstein trust region

For a policy π, we denote as: V π, Qπ and Aπ(s, a) = Qπ(s, a) − V π(s) the: value function,
Q-function and advantage function.

The chief goal of this section is to prove Theorem 5.1. We restate the section’s definitions here for
the reader’s convenience: To ease the discussion we make the following assumptions:

• Finite horizon T .
• Undiscounted MDP.
• States are time indexed. In other words, states visited at time t can’t be visited at any other time.
• S and A are finite sets.

The third assumption is solely to avoid having to define a time indexed Value function. It can be
completely avoided. We chose not to do this in the spirit of notational simplicity. These assumptions
can be relaxed, most notably we can show similar results for the discounted and infinite horizon case.
We chose to present the finite horizon proof because of the nature of our experimental results.

Let Φ = id be the identity embedding so that E = Γ. In this case PΦ
π denotes the distribution of

trajectories corresponding to policy π. We define the value function V π : S → R as

V π(st = s) = Eτ∼Pid
π

[
T∑
`=t

R(s`+1, a`, s`)|st = s

]
The Q-function Qπ : S ×A → R as:

Qπ(st, at = a) = Eτ∼Pid
π

[
T∑
`=t

R(s`+1, a`, s`)

]
Similarly, the advantage function is defined as:

Aπ(s, a) = Qπ(s, a)− V π(s)

We denote by V (π) = Eτ∼Pid
π

[∑T
t=0R(st+1, at, st)

]
the expected reward of policy π and define

the visitation frequency as:

ρπ(s) = Eτ∼Pid
π

[
T∑
t=0

1(st = s)

]
The first observation in this section is the following lemma:
Lemma C.3. two distinct policies π and π̃ can be related via the following equation :

V (π̃) = V (π) +
∑
s∈S

(
ρπ̃(s)

(∑
a∈A

π̃(a|s)Aπ(s, a)

))

Proof. Notice that Aπ(s, a) = Es′∼P (s′|a,s) [R(s′, a, s) + V π(s′)− V π(s)]. Therefore:

Eτ∼Pid
π̃

[
T∑
t=0

Aπ(st, at)

]
= Eτ∼Pid

π̃

[
T∑
t=0

R(st+1, at, st) + V π(st+1)− V π(st)

]

= Eτ∼Pid
π̃

[
T∑
t=0

R(st+1, at, st)

]
− Es0 [V π(s0)]

= −V (π) + V (π̃)

The result follows.

See [33] for an alternative proof. We also consider the following linear approximation to V around
policy π (see: [14]):

L(π̃) = V (π) +
∑
s∈S

(
ρπ(s)

(∑
a∈A

π̃(a|s)Aπ(s, a)

))
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Where the only difference is that ρπ̃ was substituted by ρπ. Consider the following embedding
Φs : Γ → R|S| defined by (Φ(τ))s =

∑T
t=0 1(st = s), and related cost function defined as:

C(v,w) = ‖v −w‖1.

Lemma C.4. The Wasserstein distance WD0(PΦs

π̃ ,PΦs

π ) is related to visit frequencies since:

WD0(PΦs

π̃ ,PΦs

π ) ≥
∑
s∈S
|ρπ(s)− ρπ̃(s)|

Proof. Let Π be the optimal coupling between PΦs

π̃ and PΦs

π . Then:

WD0(PΦs

π̃ ,PΦs

π ) = Eu,v∼Π [‖u− v‖1]

=
∑
s∈S

Eu,v∼Π [|us − vs|]

Where us and vs denote the s ∈ S indexed entry of the u and v vectors respectively. Notice that for
all s ∈ S the following is true:∣∣∣∣∣∣∣Eu∼PΦs

π
[us]︸ ︷︷ ︸

ρπ(s)

−Ev∼PΦs
π

[vs]︸ ︷︷ ︸
ρπ′ (s)

∣∣∣∣∣∣∣ ≤ Eu,v∼Π [|us − vs|]

The result follows.

These observations enable us to prove an analogue of Theorem 1 from [31], namely:

Theorem C.5. If WD0(PΦs

π̃ ,PΦs

π ) ≤ δ and ε = maxs,a |Aπ(s, a)|, then V (π̃) ≥ L(θ̃)− δε.

As in [31], Theorem 5.1 implies a policy improvement guarantee for BGPG from Section 5.4.

Proof. Notice that:

V (π̃)− L(π̃) =
∑
s∈S

(
(ρπ̃(s)− ρπ(s))

(∑
a∈A

π̃(a|s)Aπ(s, a)

))
Therefore by Holder inequality:

|V (π̃)− L(π̃)| ≤

(∑
s∈S
|ρπ(s)− ρπ̃(s)|

)
︸ ︷︷ ︸
≤WD0(PΦs

π̃ ,PΦs
π )≤δ

(
sup
s∈S

∣∣∣∣∣∑
a∈A

π̃(a|s)Aπ(s, a)

∣∣∣∣∣
)

︸ ︷︷ ︸
≤ε

The result follows.

We can leverage the results of Theorem C.5 to show wasserstein trust regions methods with embedding
Φs give a monotonically improving sequence of policies. The proof can be concluded by following
the logic of Section 3 in [31].

C.3 Off policy embeddings and their properties.

It is easy to see that if the cost function equals the l2 norm between state-policy pairs and if
WD0(PΦS

π ,PΦS
π′ ) = 0 then EPS [1(π(S) 6= π′(S))] = 0. If PS has mass only in relevant areas of the

state space, a value of zero implies the two policies behave similarly where it matters. In the case
when the user may care only about the action of a policy within a set of states of interest, this notion
applies.

When the sampling distribution can be identified with the stationary distribution over states of the
current policy, we can recover trust region-type of results for BGPG.
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